From 2d01a26c941b6444fe51dad5728f5b81203dbcff Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?= <113218619+FabianaCampanari@users.noreply.github.com> Date: Fri, 10 Jan 2025 20:57:00 -0300 Subject: [PATCH] Update README.md MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com> --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 5e30dbe..528b8a7 100644 --- a/README.md +++ b/README.md @@ -40,11 +40,11 @@ Feel free to explore, contribute, and share your insights! **Formula for Fourier Transform:** - $$\hat{f}(k) = \int_{-\infty}^{\infty} f(x) \, e^{-2\pi i k x} \, dx$$ + $$\huge \color{DeepSkyBlue} \hat{f}(k) = \int_{-\infty}^{\infty} f(x) \, e^{-2\pi i k x} \, dx$$ **Formula for Inverse Fourier Transform:** - $$f(x) = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$$ + $$\huge \color{DeepSkyBlue} f(x) = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$$ Where: - $f(x)$ is the original function in the spatial domain.