From acd68b60283b2f29ff99aeafd1f4bfd56f6b02c2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?= <113218619+FabianaCampanari@users.noreply.github.com> Date: Fri, 10 Jan 2025 20:59:14 -0300 Subject: [PATCH] Update README.md MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com> --- README.md | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 528b8a7..d87d833 100644 --- a/README.md +++ b/README.md @@ -44,12 +44,14 @@ Feel free to explore, contribute, and share your insights! **Formula for Inverse Fourier Transform:** - $$\huge \color{DeepSkyBlue} f(x) = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$$ + $$\huge \color{DeepSkyBlue} f(x) = \int_{-\infty}^{\infty} \hat{f}(k) \, e^{2\pi i k x} \, dk$$ + +
Where: - - $f(x)$ is the original function in the spatial domain. - - $\hat{f}(k)$ is the transformed function in the frequency domain. - - $x$ represents position, and $k$ represents momentum or frequency. + - $large \color{DeepSkyBlue} f(x)$ is the original function in the spatial domain. + - $large \color{DeepSkyBlue} \hat{f}(k)$ is the transformed function in the frequency domain. + - $large \color{DeepSkyBlue} large \color{DeepSkyBlue}x$ represents position, and $k$ represents momentum or frequency. **Relevance in Quantum Mechanics and Computing:** - **Quantum Mechanics**: Converts wavefunctions between position and momentum spaces.