From 5887f1cb95c6a3babdcc2054e215bc8a551e13f9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?= <113218619+FabianaCampanari@users.noreply.github.com> Date: Wed, 15 Jan 2025 22:22:06 -0300 Subject: [PATCH] Update README.md MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com> --- README.md | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index 8e452ac..b68e73c 100644 --- a/README.md +++ b/README.md @@ -119,7 +119,14 @@ Carl Friedrich Gauss was pivotal in developing the mathematical framework used i * **Gaussian Distribution Formula:** - $\huge \color{DeepSkyBlue} f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ + $\huge \color{DeepSkyBlue} f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ + + Where: + - **\( \mu \)**: Mean of the distribution. + - **\( \sigma \)**: Standard deviation. + - **\( x \)**: Random variable. + + This formula is widely used to model measurement uncertainties in quantum mechanics.