From 43afc1b29ae4593f677db8b7e5240e93696c0a07 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?= <113218619+FabianaCampanari@users.noreply.github.com> Date: Sun, 19 Jan 2025 22:23:14 -0300 Subject: [PATCH] Update README.md MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com> --- README.md | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 61f330e..228c673 100644 --- a/README.md +++ b/README.md @@ -204,8 +204,10 @@ Joseph Fourier’s development of Fourier analysis allowed quantum mechanics to * Srinivasa Ramanujan made groundbreaking contributions to mathematics, particularly in the realms of modular forms and infinite series. His work has had a lasting impact on various fields, including quantum gravity and string theory. ### **Ramanujan's Infinite Series for \( \pi \):*** - - $\huge \color{DeepSkyBlue} \frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 396^{4n}}$ + + One of his most famous formulas is an infinite series for + + $\huge \color{DeepSkyBlue} \frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 396^{4n}}$