From 606e332571cd298d53e936e75c48bdb521c0a42c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?= <113218619+FabianaCampanari@users.noreply.github.com> Date: Sun, 19 Jan 2025 23:58:01 -0300 Subject: [PATCH] Update README.md MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com> --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 17c8ef7..68eceaf 100644 --- a/README.md +++ b/README.md @@ -211,13 +211,13 @@ Srinivasa Ramanujan made groundbreaking contributions to mathematics, particular One of his most famous formulas is an infinite series for \( \frac{1}{\pi} \): -$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 396^{4n}}$ +$\huge \color{DeepSkyBlue} \frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 396^{4n}}$
Where: -- **\( n \)**: Summation index. +- **$\huge \color{DeepSkyBlue} \( n \)$** : Summation index. This series converges extraordinarily rapidly, making it highly efficient for calculating \( \pi \) to many decimal places. In 1985, William Gosper used this formula to compute \( \pi \) to 17 million digits.