From 4a74a260da19aa362998c2997b9854c5067ff703 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?= <113218619+FabianaCampanari@users.noreply.github.com> Date: Mon, 20 Jan 2025 00:10:41 -0300 Subject: [PATCH] Update README.md MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com> --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 68eceaf..a41a97b 100644 --- a/README.md +++ b/README.md @@ -209,7 +209,7 @@ Srinivasa Ramanujan made groundbreaking contributions to mathematics, particular ### **Ramanujan's Infinite Series for \( \pi \):** -One of his most famous formulas is an infinite series for \( \frac{1}{\pi} \): +One of his most famous formulas is an infinite series for $large \color{DeepSkyBlue} \( \frac{1}{\pi} \)$: $\huge \color{DeepSkyBlue} \frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 396^{4n}}$ @@ -217,7 +217,7 @@ $\huge \color{DeepSkyBlue} \frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{n=0}^{\i Where: -- **$\huge \color{DeepSkyBlue} \( n \)$** : Summation index. +- **$large \color{DeepSkyBlue} \( n \)$** : Summation index. This series converges extraordinarily rapidly, making it highly efficient for calculating \( \pi \) to many decimal places. In 1985, William Gosper used this formula to compute \( \pi \) to 17 million digits.