From 0f940a10654b440746ba6537f11c4724c605a461 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?=
<113218619+FabianaCampanari@users.noreply.github.com>
Date: Wed, 29 Jan 2025 21:42:22 -0300
Subject: [PATCH] Update README.md
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Signed-off-by: Fabiana π Campanari <113218619+FabianaCampanari@users.noreply.github.com>
---
README.md | 8 ++++----
1 file changed, 4 insertions(+), 4 deletions(-)
diff --git a/README.md b/README.md
index 36d94ac..65937d2 100644
--- a/README.md
+++ b/README.md
@@ -172,14 +172,14 @@ Carl Friedrich Gauss was pivotal in developing the mathematical framework used i
[Where]():
- - $\large \color{DeepSkyBlue}\( \mu \)$: Mean of the distribution.
- - $\large \color{DeepSkyBlue} \( \sigma \)$: Standard deviation.
- - $\large \color{DeepSkyBlue} \( x \)$: Random variable.
+ - $\large \color{DeepSkyBlue} \ \mu \$: Mean of the distribution.
+ - $\large \color{DeepSkyBlue} \ \sigma \$: Standard deviation.
+ - $\large \color{DeepSkyBlue} \ x \$: Random variable.
This formula is widely used to [model measurement uncertainties]() in quantum mechanics.
#
-
+
### 3. [Joseph Fourier]() (1822)
ββββββββββββββ
Joseph Fourierβs development of Fourier analysis allowed quantum mechanics to describe wave functions in terms of frequency components. His work directly relates to the development of quantum mechanics in wave propagation.