From a16ef726a8ac35dcf5b20f48069e92238e9651b0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabiana=20=F0=9F=9A=80=20=20Campanari?= <113218619+FabianaCampanari@users.noreply.github.com> Date: Tue, 4 Feb 2025 23:45:27 -0300 Subject: [PATCH] Update README.md MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com> --- README.md | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) diff --git a/README.md b/README.md index 1f07880..ba355ab 100644 --- a/README.md +++ b/README.md @@ -327,6 +327,25 @@ Time-dependent form of Schrödinger’s equation: $\huge \color{DeepSkyBlue} i\hbar \frac{\partial}{\partial t} \psi(r, t) = \hat{H} \psi(r, t)$ +Where: + • $\large \color{DeepSkyBlue} \psi(r, t)$ is the wave function of the system. + • $\large \color{DeepSkyBlue} \hat{H}$ is the Hamiltonian operator. + • $\large \color{DeepSkyBlue} \hbar$ is the reduced Planck’s constant. + +10. Werner Heisenberg (1927) +Uncertainty Principle, central to quantum physics. + +Formula for the Uncertainty Principle: +$\huge \color{DeepSkyBlue} \Delta x \cdot \Delta p \geq \frac{\hbar}{2}$ + +Where: + • $\large \color{DeepSkyBlue} \Delta x$ is the uncertainty in position. + • $\large \color{DeepSkyBlue} \Delta p$ is the uncertainty in momentum. + + + + +