From a53d1f36f4e670114b9baf4e5102505f381eceb0 Mon Sep 17 00:00:00 2001 From: Andrei Chernov Date: Wed, 5 Nov 2025 19:41:18 +0100 Subject: [PATCH] update readme --- README.md | 80 +++---------------------------------------------------- 1 file changed, 4 insertions(+), 76 deletions(-) diff --git a/README.md b/README.md index 5cee745..cb7869f 100644 --- a/README.md +++ b/README.md @@ -25,7 +25,7 @@ pip install faim-sdk ## Authentication -Get your free API key at **[https://faim.it.com/](https://faim.it.com/)** +Get your API key at **[https://faim.it.com/](https://faim.it.com/)** ```python from faim_sdk import ForecastClient @@ -459,81 +459,11 @@ async def forecast_multiple_series(): responses = asyncio.run(forecast_multiple_series()) ``` -## Configuration - -### Client Options - -```python -from faim_sdk import ForecastClient - -# Basic configuration -client = ForecastClient( - timeout=120.0, # Request timeout in seconds (default: 120) - verify_ssl=True, # SSL certificate verification (default: True) -) - -# With API key authentication -client = ForecastClient( - api_key="your-secret-api-key", - timeout=120.0 -) - -# Advanced configuration with custom httpx settings -import httpx - -client = ForecastClient( - api_key="your-api-key", - timeout=120.0, - limits=httpx.Limits(max_connections=10), # Connection pooling - headers={"X-Custom-Header": "value"} # Custom headers -) -``` - -### Request Options - -```python -# Compression options for large payloads -request = Chronos2ForecastRequest( - x=data, - horizon=24, - compression="zstd" # Options: "zstd", "lz4", None (default: "zstd") -) - -# Model version pinning -request = FlowStateForecastRequest( - x=data, - horizon=24, - model_version="1.2.3" # Pin to specific version (default: "latest") -) -``` - -## Context Managers - -Use context managers for automatic resource cleanup: - -```python -# Sync context manager -with ForecastClient() as client: - request = Chronos2ForecastRequest(x=data, horizon=24, quantiles=[0.1, 0.5, 0.9]) - response = client.forecast(request) - print(response.quantiles) -# Client automatically closed - -# Async context manager -async with ForecastClient() as client: - request = Chronos2ForecastRequest(x=data, horizon=24, quantiles=[0.1, 0.9]) - response = await client.forecast_async(request) - print(response.quantiles) -# Client automatically closed -``` - ## Examples See the `examples/` directory for complete Jupyter notebook examples: -- **`flowstate_simple_example.ipynb`** - Point forecasting with FlowState on AirPassengers dataset -- **`chronos2_probabilistic.ipynb`** - Probabilistic forecasting with quantiles (coming soon) -- **`batch_processing.ipynb`** - Efficient batch processing patterns (coming soon) +- **`model_comparison_simple.ipynb`** - Point forecasting with FlowState on AirPassengers dataset ## Requirements @@ -562,9 +492,7 @@ See the `examples/` directory for complete Jupyter notebook examples: ## Support -- **Documentation**: [docs.faim.example.com](https://docs.faim.example.com) -- **Issues**: [GitHub Issues](https://github.com/your-org/faim-sdk/issues) -- **Email**: support@faim.example.com +- **Email**: support@faim.it.com ## License @@ -579,6 +507,6 @@ If you use FAIM in your research, please cite: title = {FAIM SDK: Foundation AI Models for Time Series Forecasting}, author = {FAIM Team}, year = {2024}, - url = {https://github.com/your-org/faim-sdk} + url = {https://github.com/S-FM/faim-python-client} } ```