@@ -56,12 +56,12 @@ def filtered_output(data, output_name):
5656
5757
5858@pn .cache
59- def significance (inputs , output ):
60- si = sd .significance (inputs = inputs , output = output ).si
59+ def sensitivity_indices (inputs , output ):
60+ si = sd .sensitivity_indices (inputs = inputs , output = output ).si
6161 return si
6262
6363
64- def significance_table (si , inputs ):
64+ def sensitivity_indices_table (si , inputs ):
6565 var_names = inputs .columns
6666 var_order = np .argsort (si )[::- 1 ]
6767 var_names = var_names [var_order ].tolist ()
@@ -98,30 +98,30 @@ def explained_variance(si):
9898 return sum (si ) + np .finfo (np .float64 ).eps
9999
100100
101- def filtered_si (significance_table , input_names ):
102- df = significance_table .value
101+ def filtered_si (sensitivity_indices_table , input_names ):
102+ df = sensitivity_indices_table .value
103103 si = []
104104 for input_name in input_names :
105105 si .append (df .loc [df ["Inputs" ] == input_name , "Indices" ])
106106 return np .asarray (si ).flatten ()
107107
108108
109- def explained_variance_80 (significance_table ):
110- si = significance_table .value ["Indices" ]
109+ def explained_variance_80 (sensitivity_indices_table ):
110+ si = sensitivity_indices_table .value ["Indices" ]
111111 pos_80 = bisect .bisect_right (np .cumsum (si ), 0.8 )
112112
113113 # pos_80 = max(2, pos_80)
114114 # pos_80 = min(len(si), pos_80)
115115
116- input_names = significance_table .value ["Inputs" ]
116+ input_names = sensitivity_indices_table .value ["Inputs" ]
117117 return input_names .to_list ()[: pos_80 + 1 ]
118118
119119
120120def decomposition (dec_limit , si , inputs , output ):
121121 return sd .decomposition (
122122 inputs = inputs ,
123123 output = output ,
124- significance = si ,
124+ sensitivity_indices = si ,
125125 dec_limit = dec_limit ,
126126 auto_ordering = False ,
127127 )
@@ -203,15 +203,19 @@ def tableau_states(res, states):
203203 filtered_output , interactive_file , selector_inputs_sensitivity
204204)
205205
206- interactive_significance = pn .bind (significance , interactive_inputs , interactive_output )
207- interactive_explained_variance = pn .bind (explained_variance , interactive_significance )
206+ interactive_sensitivity_indices = pn .bind (
207+ sensitivity_indices , interactive_inputs , interactive_output
208+ )
209+ interactive_explained_variance = pn .bind (
210+ explained_variance , interactive_sensitivity_indices
211+ )
208212
209- interactive_significance_table = pn .bind (
210- significance_table , interactive_significance , interactive_inputs
213+ interactive_sensitivity_indices_table = pn .bind (
214+ sensitivity_indices_table , interactive_sensitivity_indices , interactive_inputs
211215)
212216
213217interactive_explained_variance_80 = pn .bind (
214- explained_variance_80 , interactive_significance_table
218+ explained_variance_80 , interactive_sensitivity_indices_table
215219)
216220selector_inputs_decomposition = pn .widgets .MultiChoice (
217221 name = "Select inputs for decomposition" ,
@@ -224,7 +228,7 @@ def tableau_states(res, states):
224228)
225229
226230interactive_filtered_si = pn .bind (
227- filtered_si , interactive_significance_table , selector_inputs_decomposition
231+ filtered_si , interactive_sensitivity_indices_table , selector_inputs_decomposition
228232)
229233interactive_filtered_explained_variance = pn .bind (
230234 explained_variance , interactive_filtered_si
@@ -339,7 +343,7 @@ def tableau_states(res, states):
339343 ),
340344 pn .Spacer (height = 50 ),
341345 pn .pane .Markdown (si_description , styles = {"color" : "#0072b5" }),
342- pn .Column (interactive_significance_table , width = 400 ),
346+ pn .Column (interactive_sensitivity_indices_table , width = 400 ),
343347 ),
344348 pn .Column (
345349 pn .pane .Markdown (table_description , styles = {"color" : "#0072b5" }),
0 commit comments