22
33## 🎯 Feature Request Implementation
44
5- ** Issue:** "Add neural network optimizers module to enhance training capabilities"
6- ** Requested by:** @Adhithya-Laxman
5+ ** Issue:** "Add neural network optimizers module to enhance training capabilities"
6+ ** Requested by:** @Adhithya-Laxman
77** Status:** ✅ ** COMPLETED**
88
99## 📦 What Was Implemented
@@ -15,7 +15,7 @@ neural_network/optimizers/
1515├── base_optimizer.py # Abstract base class for all optimizers
1616├── sgd.py # Stochastic Gradient Descent
1717├── momentum_sgd.py # SGD with Momentum
18- ├── nag.py # Nesterov Accelerated Gradient
18+ ├── nag.py # Nesterov Accelerated Gradient
1919├── adagrad.py # Adaptive Gradient Algorithm
2020├── adam.py # Adaptive Moment Estimation
2121├── README.md # Comprehensive documentation
@@ -28,7 +28,7 @@ neural_network/optimizers/
2828 - Basic gradient descent: ` θ = θ - α * g `
2929 - Foundation for understanding optimization
3030
31- 2 . ** MomentumSGD**
31+ 2 . ** MomentumSGD**
3232 - Adds momentum for acceleration: ` v = β*v + (1-β)*g; θ = θ - α*v `
3333 - Reduces oscillations and speeds convergence
3434
@@ -52,7 +52,7 @@ neural_network/optimizers/
5252- ** Type Safety** : Full type hints throughout (` typing ` , ` Union ` , ` List ` )
5353- ** Educational Focus** : Clear mathematical formulations in docstrings
5454- ** Comprehensive Testing** : Doctests + example scripts
55- - ** Consistent Interface** : All inherit from ` BaseOptimizer `
55+ - ** Consistent Interface** : All inherit from ` BaseOptimizer `
5656- ** Error Handling** : Proper validation and meaningful error messages
5757
5858### 📝 Code Quality Features
@@ -80,21 +80,21 @@ The implementation was validated on multiple test problems:
8080- Momentum accelerates convergence but can overshoot
8181- Adam provides robust performance with adaptive learning
8282
83- ### Multi-dimensional (f(x,y) = x² + 10y²)
83+ ### Multi-dimensional (f(x,y) = x² + 10y²)
8484- Tests adaptation to different parameter scales
8585- Adagrad and Adam handle scale differences well
8686- Momentum methods show improved stability
8787
8888### Rosenbrock Function (Non-convex)
89- - Classic challenging optimization benchmark
89+ - Classic challenging optimization benchmark
9090- Adam significantly outperformed other methods
9191- Demonstrates real-world applicability
9292
9393## 🎯 Educational Value
9494
9595### Progressive Complexity
96961 . ** SGD** : Foundation - understand basic gradient descent
97- 2 . ** Momentum** : Build intuition for acceleration methods
97+ 2 . ** Momentum** : Build intuition for acceleration methods
98983 . ** NAG** : Learn about lookahead and overshoot correction
99994 . ** Adagrad** : Understand adaptive learning rates
1001005 . ** Adam** : See how modern optimizers combine techniques
@@ -106,7 +106,7 @@ The implementation was validated on multiple test problems:
106106
107107### Code Patterns
108108- Abstract base classes and inheritance
109- - Recursive algorithms for nested data structures
109+ - Recursive algorithms for nested data structures
110110- State management in optimization algorithms
111111- Type safety in scientific computing
112112
@@ -126,7 +126,7 @@ from neural_network.optimizers import SGD, Adam, Adagrad
126126
127127optimizers = {
128128 " sgd" : SGD(0.01 ),
129- " adam" : Adam(0.001 ),
129+ " adam" : Adam(0.001 ),
130130 " adagrad" : Adagrad(0.01 )
131131}
132132
@@ -147,7 +147,7 @@ updated = optimizer.update(params_2d, grads_2d)
147147
148148### For the Repository
149149- ** Gap Filled** : Addresses missing neural network optimization algorithms
150- - ** Educational Value** : High-quality learning resource for ML students
150+ - ** Educational Value** : High-quality learning resource for ML students
151151- ** Code Quality** : Demonstrates best practices in scientific Python
152152- ** Completeness** : Makes the repo more comprehensive for ML learning
153153
@@ -163,7 +163,7 @@ The modular design makes it easy to add more optimizers:
163163
164164### Future Additions Could Include
165165- ** RMSprop** : Another popular adaptive optimizer
166- - ** AdamW** : Adam with decoupled weight decay
166+ - ** AdamW** : Adam with decoupled weight decay
167167- ** LAMB** : Layer-wise Adaptive Moments optimizer
168168- ** Muon** : Advanced Newton-Schulz orthogonalization method
169169- ** Learning Rate Schedulers** : Time-based adaptation
@@ -185,7 +185,7 @@ class NewOptimizer(BaseOptimizer):
185185- ✅ ** Incremental Complexity** : SGD → Momentum → NAG → Adagrad → Adam
186186- ✅ ** Documentation** : Comprehensive docstrings and README
187187- ✅ ** Type Hints** : Full type safety throughout
188- - ✅ ** Testing** : Doctests + comprehensive test suite
188+ - ✅ ** Testing** : Doctests + comprehensive test suite
189189- ✅ ** Educational Value** : Clear explanations and examples
190190
191191### Additional Value Delivered
0 commit comments