|
| 1 | +""" |
| 2 | +Splay Tree implementation in Python. |
| 3 | +
|
| 4 | +A Splay Tree is a self-adjusting binary search tree that brings the most |
| 5 | +recently accessed element to the root via tree rotations. It provides |
| 6 | +amortized O(log n) time complexity for search, insert, and delete operations. |
| 7 | +
|
| 8 | +Reference: |
| 9 | +https://en.wikipedia.org/wiki/Splay_tree |
| 10 | +""" |
| 11 | + |
| 12 | +from __future__ import annotations |
| 13 | +from typing import Optional, List |
| 14 | + |
| 15 | + |
| 16 | +class Node: |
| 17 | + """Node class for the Splay Tree.""" |
| 18 | + |
| 19 | + def __init__(self, key: int) -> None: |
| 20 | + self.key = key |
| 21 | + self.left: Optional[Node] = None |
| 22 | + self.right: Optional[Node] = None |
| 23 | + |
| 24 | + |
| 25 | +class SplayTree: |
| 26 | + """Splay Tree Data Structure.""" |
| 27 | + |
| 28 | + def __init__(self) -> None: |
| 29 | + self.root: Optional[Node] = None |
| 30 | + |
| 31 | + # ------------------------- ROTATIONS ------------------------- |
| 32 | + def _right_rotate(self, x: Node) -> Node: |
| 33 | + y = x.left |
| 34 | + x.left = y.right |
| 35 | + y.right = x |
| 36 | + return y |
| 37 | + |
| 38 | + def _left_rotate(self, x: Node) -> Node: |
| 39 | + y = x.right |
| 40 | + x.right = y.left |
| 41 | + y.left = x |
| 42 | + return y |
| 43 | + |
| 44 | + # ------------------------- SPLAY OPERATION ------------------------- |
| 45 | + def _splay(self, root: Optional[Node], key: int) -> Optional[Node]: |
| 46 | + if root is None or root.key == key: |
| 47 | + return root |
| 48 | + |
| 49 | + # Key in left subtree |
| 50 | + if key < root.key: |
| 51 | + if root.left is None: |
| 52 | + return root |
| 53 | + |
| 54 | + # Zig-Zig (Left Left) |
| 55 | + if key < root.left.key: |
| 56 | + root.left.left = self._splay(root.left.left, key) |
| 57 | + root = self._right_rotate(root) |
| 58 | + # Zig-Zag (Left Right) |
| 59 | + elif key > root.left.key: |
| 60 | + root.left.right = self._splay(root.left.right, key) |
| 61 | + if root.left.right: |
| 62 | + root.left = self._left_rotate(root.left) |
| 63 | + return root if root.left is None else self._right_rotate(root) |
| 64 | + |
| 65 | + # Key in right subtree |
| 66 | + else: |
| 67 | + if root.right is None: |
| 68 | + return root |
| 69 | + |
| 70 | + # Zig-Zig (Right Right) |
| 71 | + if key > root.right.key: |
| 72 | + root.right.right = self._splay(root.right.right, key) |
| 73 | + root = self._left_rotate(root) |
| 74 | + # Zig-Zag (Right Left) |
| 75 | + elif key < root.right.key: |
| 76 | + root.right.left = self._splay(root.right.left, key) |
| 77 | + if root.right.left: |
| 78 | + root.right = self._right_rotate(root.right) |
| 79 | + return root if root.right is None else self._left_rotate(root) |
| 80 | + |
| 81 | + # ------------------------- INSERTION ------------------------- |
| 82 | + def insert(self, key: int) -> None: |
| 83 | + """Inserts a key into the Splay Tree.""" |
| 84 | + if self.root is None: |
| 85 | + self.root = Node(key) |
| 86 | + return |
| 87 | + |
| 88 | + self.root = self._splay(self.root, key) |
| 89 | + if self.root.key == key: |
| 90 | + return # No duplicates |
| 91 | + |
| 92 | + new_node = Node(key) |
| 93 | + if key < self.root.key: |
| 94 | + new_node.right = self.root |
| 95 | + new_node.left = self.root.left |
| 96 | + self.root.left = None |
| 97 | + else: |
| 98 | + new_node.left = self.root |
| 99 | + new_node.right = self.root.right |
| 100 | + self.root.right = None |
| 101 | + self.root = new_node |
| 102 | + |
| 103 | + # ------------------------- SEARCH ------------------------- |
| 104 | + def search(self, key: int) -> bool: |
| 105 | + """Searches for a key and splays it to the root.""" |
| 106 | + self.root = self._splay(self.root, key) |
| 107 | + return self.root is not None and self.root.key == key |
| 108 | + |
| 109 | + # ------------------------- DELETION ------------------------- |
| 110 | + def delete(self, key: int) -> None: |
| 111 | + """Deletes a key from the Splay Tree.""" |
| 112 | + if not self.root: |
| 113 | + return |
| 114 | + |
| 115 | + self.root = self._splay(self.root, key) |
| 116 | + if self.root.key != key: |
| 117 | + return # Key not found |
| 118 | + |
| 119 | + if self.root.left is None: |
| 120 | + self.root = self.root.right |
| 121 | + else: |
| 122 | + temp = self.root.right |
| 123 | + self.root = self._splay(self.root.left, key) |
| 124 | + self.root.right = temp |
| 125 | + |
| 126 | + # ------------------------- TRAVERSALS ------------------------- |
| 127 | + def inorder(self, root: Optional[Node]) -> List[int]: |
| 128 | + """Returns an inorder traversal of the tree.""" |
| 129 | + return [] if not root else self.inorder(root.left) + [root.key] + self.inorder(root.right) |
| 130 | + |
| 131 | + def preorder(self, root: Optional[Node]) -> List[int]: |
| 132 | + """Returns a preorder traversal of the tree.""" |
| 133 | + return [] if not root else [root.key] + self.preorder(root.left) + self.preorder(root.right) |
| 134 | + |
| 135 | + |
| 136 | +if __name__ == "__main__": |
| 137 | + # Example usage and demonstration |
| 138 | + tree = SplayTree() |
| 139 | + for value in [10, 20, 30, 40, 50, 25]: |
| 140 | + tree.insert(value) |
| 141 | + |
| 142 | + print("Inorder traversal:", tree.inorder(tree.root)) |
| 143 | + print("Search for 25:", tree.search(25)) |
| 144 | + print("After searching 25, root =", tree.root.key) |
| 145 | + tree.delete(20) |
| 146 | + print("After deleting 20:", tree.inorder(tree.root)) |
0 commit comments