|
| 1 | +#imports |
| 2 | +import torch |
| 3 | +import torch.nn as nn |
| 4 | +import math |
| 5 | +#Time2Vec layer for positional encoding of real-time data like EEG |
| 6 | +class Time2Vec(nn.Module): |
| 7 | + #Encodes time steps into a continuous embedding space so to help the transformer learn temporal dependencies. |
| 8 | + def __init__(self, d_model): |
| 9 | + super().__init__() |
| 10 | + self.w0 = nn.Parameter(torch.randn(1, 1)) |
| 11 | + self.b0 = nn.Parameter(torch.randn(1, 1)) |
| 12 | + self.w = nn.Parameter(torch.randn(1, d_model - 1)) |
| 13 | + self.b = nn.Parameter(torch.randn(1, d_model - 1)) |
| 14 | + |
| 15 | + def forward(self, t): |
| 16 | + linear = self.w0 * t + self.b0 |
| 17 | + periodic = torch.sin(self.w * t + self.b) |
| 18 | + return torch.cat([linear, periodic], dim=-1) |
| 19 | + |
| 20 | +#positionwise feedforward network |
| 21 | +class PositionwiseFeedForward(nn.Module): |
| 22 | + def __init__(self, d_model, hidden, drop_prob=0.1): |
| 23 | + super().__init__() |
| 24 | + self.fc1 = nn.Linear(d_model, hidden) |
| 25 | + self.fc2 = nn.Linear(hidden, d_model) |
| 26 | + self.relu = nn.ReLU() |
| 27 | + self.dropout = nn.Dropout(drop_prob) |
| 28 | + |
| 29 | + def forward(self, x): |
| 30 | + x = self.fc1(x) |
| 31 | + x = self.relu(x) |
| 32 | + x = self.dropout(x) |
| 33 | + return self.fc2(x) |
| 34 | +#scaled dot product attention |
| 35 | +class ScaleDotProductAttention(nn.Module): |
| 36 | + def __init__(self): |
| 37 | + super().__init__() |
| 38 | + self.softmax = nn.Softmax(dim=-1) |
| 39 | + |
| 40 | + def forward(self, q, k, v, mask=None): |
| 41 | + _, _, _, d_k = k.size() |
| 42 | + scores = (q @ k.transpose(2, 3)) / math.sqrt(d_k) |
| 43 | + |
| 44 | + if mask is not None: |
| 45 | + scores = scores.masked_fill(mask == 0, -1e9) |
| 46 | + |
| 47 | + attn = self.softmax(scores) |
| 48 | + context = attn @ v |
| 49 | + return context, attn |
| 50 | +#multi head attention |
| 51 | +class MultiHeadAttention(nn.Module): |
| 52 | + def __init__(self, d_model, n_head): |
| 53 | + super().__init__() |
| 54 | + self.n_head = n_head |
| 55 | + self.attn = ScaleDotProductAttention() |
| 56 | + self.w_q = nn.Linear(d_model, d_model) |
| 57 | + self.w_k = nn.Linear(d_model, d_model) |
| 58 | + self.w_v = nn.Linear(d_model, d_model) |
| 59 | + self.w_out = nn.Linear(d_model, d_model) |
| 60 | + |
| 61 | + def forward(self, q, k, v, mask=None): |
| 62 | + q, k, v = self.w_q(q), self.w_k(k), self.w_v(v) |
| 63 | + q, k, v = self.split_heads(q), self.split_heads(k), self.split_heads(v) |
| 64 | + |
| 65 | + context, _ = self.attn(q, k, v, mask) |
| 66 | + out = self.w_out(self.concat_heads(context)) |
| 67 | + return out |
| 68 | + |
| 69 | + def split_heads(self, x): |
| 70 | + batch, seq_len, d_model = x.size() |
| 71 | + d_k = d_model // self.n_head |
| 72 | + return x.view(batch, seq_len, self.n_head, d_k).transpose(1, 2) |
| 73 | + |
| 74 | + def concat_heads(self, x): |
| 75 | + batch, n_head, seq_len, d_k = x.size() |
| 76 | + return x.transpose(1, 2).contiguous().view(batch, seq_len, n_head * d_k) |
| 77 | + |
| 78 | +#Layer normalization |
| 79 | +class LayerNorm(nn.Module): |
| 80 | + def __init__(self, d_model, eps=1e-12): |
| 81 | + super().__init__() |
| 82 | + self.gamma = nn.Parameter(torch.ones(d_model)) |
| 83 | + self.beta = nn.Parameter(torch.zeros(d_model)) |
| 84 | + self.eps = eps |
| 85 | + |
| 86 | + def forward(self, x): |
| 87 | + mean = x.mean(-1, keepdim=True) |
| 88 | + var = x.var(-1, unbiased=False, keepdim=True) |
| 89 | + return self.gamma * (x - mean) / torch.sqrt(var + self.eps) + self.beta |
| 90 | + |
| 91 | +#transformer encoder layer |
| 92 | +class TransformerEncoderLayer(nn.Module): |
| 93 | + def __init__(self, d_model, n_head, hidden_dim, drop_prob=0.1): |
| 94 | + super().__init__() |
| 95 | + self.self_attn = MultiHeadAttention(d_model, n_head) |
| 96 | + self.ffn = PositionwiseFeedForward(d_model, hidden_dim, drop_prob) |
| 97 | + self.norm1 = LayerNorm(d_model) |
| 98 | + self.norm2 = LayerNorm(d_model) |
| 99 | + self.dropout = nn.Dropout(drop_prob) |
| 100 | + |
| 101 | + def forward(self, x, mask=None): |
| 102 | + attn_out = self.self_attn(x, x, x, mask) |
| 103 | + x = self.norm1(x + self.dropout(attn_out)) |
| 104 | + ffn_out = self.ffn(x) |
| 105 | + x = self.norm2(x + self.dropout(ffn_out)) |
| 106 | + |
| 107 | + return x |
| 108 | + |
| 109 | +#encoder stack |
| 110 | +class TransformerEncoder(nn.Module): |
| 111 | + def __init__(self, d_model, n_head, hidden_dim, num_layers, drop_prob=0.1): |
| 112 | + super().__init__() |
| 113 | + self.layers = nn.ModuleList([ |
| 114 | + TransformerEncoderLayer(d_model, n_head, hidden_dim, drop_prob) |
| 115 | + for _ in range(num_layers) |
| 116 | + ]) |
| 117 | + |
| 118 | + def forward(self, x, mask=None): |
| 119 | + for layer in self.layers: |
| 120 | + x = layer(x, mask) |
| 121 | + return x |
| 122 | + |
| 123 | + |
| 124 | +#attention pooling layer |
| 125 | +class AttentionPooling(nn.Module): |
| 126 | + def __init__(self, d_model): |
| 127 | + super().__init__() |
| 128 | + self.attn_score = nn.Linear(d_model, 1) |
| 129 | + |
| 130 | + def forward(self, x, mask=None): |
| 131 | + attn_weights = torch.softmax(self.attn_score(x).squeeze(-1), dim=-1) |
| 132 | + |
| 133 | + if mask is not None: |
| 134 | + attn_weights = attn_weights.masked_fill(mask == 0, 0) |
| 135 | + attn_weights = attn_weights / (attn_weights.sum(dim=1, keepdim=True) + 1e-8) |
| 136 | + |
| 137 | + pooled = torch.bmm(attn_weights.unsqueeze(1), x).squeeze(1) |
| 138 | + return pooled, attn_weights |
| 139 | + |
| 140 | +# transformer model |
| 141 | + |
| 142 | +class EEGTransformer(nn.Module): |
| 143 | + |
| 144 | + def __init__(self, feature_dim, d_model=128, n_head=8, hidden_dim=512, |
| 145 | + num_layers=4, drop_prob=0.1, output_dim=1, task_type='regression'): |
| 146 | + super().__init__() |
| 147 | + self.task_type = task_type |
| 148 | + self.input_proj = nn.Linear(feature_dim, d_model) |
| 149 | + |
| 150 | + # Time encoding for temporal understanding |
| 151 | + self.time2vec = Time2Vec(d_model) |
| 152 | + |
| 153 | + # Transformer encoder for sequence modeling |
| 154 | + self.encoder = TransformerEncoder(d_model, n_head, hidden_dim, num_layers, drop_prob) |
| 155 | + |
| 156 | + # Attention pooling to summarize time dimension |
| 157 | + self.pooling = AttentionPooling(d_model) |
| 158 | + |
| 159 | + # Final output layer |
| 160 | + self.output_layer = nn.Linear(d_model, output_dim) |
| 161 | + |
| 162 | + def forward(self, x, mask=None): |
| 163 | + |
| 164 | + b, t, _ = x.size() |
| 165 | + |
| 166 | + # Create time indices and embed them |
| 167 | + t_idx = torch.arange(t, device=x.device).view(1, t, 1).expand(b, t, 1).float() |
| 168 | + time_emb = self.time2vec(t_idx) |
| 169 | + |
| 170 | + # Add time embedding to feature projection |
| 171 | + x = self.input_proj(x) + time_emb |
| 172 | + |
| 173 | + # Pass through the Transformer encoder |
| 174 | + x = self.encoder(x, mask) |
| 175 | + |
| 176 | + # Aggregate features across time with attention |
| 177 | + pooled, attn_weights = self.pooling(x, mask) |
| 178 | + |
| 179 | + # Final output (regression or classification) |
| 180 | + out = self.output_layer(pooled) |
| 181 | + |
| 182 | + if self.task_type == 'classification': |
| 183 | + out = torch.softmax(out, dim=-1) |
| 184 | + |
| 185 | + return out, attn_weights |
0 commit comments