|
| 1 | +""" |
| 2 | +Matrix trace calculation. |
| 3 | +
|
| 4 | +The trace of a square matrix is the sum of the elements on the main diagonal. |
| 5 | +It's an important linear algebra operation with many applications. |
| 6 | +
|
| 7 | +Reference: https://en.wikipedia.org/wiki/Trace_(linear_algebra) |
| 8 | +""" |
| 9 | + |
| 10 | +import numpy as np |
| 11 | +from numpy import float64 |
| 12 | +from numpy.typing import NDArray |
| 13 | + |
| 14 | + |
| 15 | +def trace(matrix: NDArray[float64]) -> float: |
| 16 | + """ |
| 17 | + Calculate the trace of a square matrix. |
| 18 | + |
| 19 | + The trace is the sum of the diagonal elements of a square matrix. |
| 20 | +
|
| 21 | + Parameters: |
| 22 | + matrix (NDArray[float64]): A square matrix |
| 23 | +
|
| 24 | + Returns: |
| 25 | + float: The trace of the matrix |
| 26 | +
|
| 27 | + Raises: |
| 28 | + ValueError: If the matrix is not square |
| 29 | +
|
| 30 | + Examples: |
| 31 | + >>> import numpy as np |
| 32 | + >>> matrix = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=float) |
| 33 | + >>> trace(matrix) |
| 34 | + 5.0 |
| 35 | +
|
| 36 | + >>> matrix = np.array([[2.0, -1.0, 3.0], [4.0, 5.0, -2.0], [1.0, 0.0, 7.0]], dtype=float) |
| 37 | + >>> trace(matrix) |
| 38 | + 14.0 |
| 39 | +
|
| 40 | + >>> matrix = np.array([[5.0]], dtype=float) |
| 41 | + >>> trace(matrix) |
| 42 | + 5.0 |
| 43 | + """ |
| 44 | + if matrix.shape[0] != matrix.shape[1]: |
| 45 | + raise ValueError("Matrix must be square") |
| 46 | + |
| 47 | + return float(np.sum(np.diag(matrix))) |
| 48 | + |
| 49 | + |
| 50 | +def trace_properties_demo(matrix: NDArray[float64]) -> dict: |
| 51 | + """ |
| 52 | + Demonstrate various properties of the trace operation. |
| 53 | + |
| 54 | + Parameters: |
| 55 | + matrix (NDArray[float64]): A square matrix |
| 56 | + |
| 57 | + Returns: |
| 58 | + dict: Dictionary containing trace properties and calculations |
| 59 | + """ |
| 60 | + if matrix.shape[0] != matrix.shape[1]: |
| 61 | + raise ValueError("Matrix must be square") |
| 62 | + |
| 63 | + n = matrix.shape[0] |
| 64 | + |
| 65 | + # Calculate trace |
| 66 | + tr = trace(matrix) |
| 67 | + |
| 68 | + # Calculate transpose trace (should be equal to original) |
| 69 | + tr_transpose = trace(matrix.T) |
| 70 | + |
| 71 | + # Calculate trace of scalar multiple |
| 72 | + scalar = 2.0 |
| 73 | + tr_scalar = trace(scalar * matrix) |
| 74 | + |
| 75 | + # Create identity matrix for comparison |
| 76 | + identity = np.eye(n, dtype=float64) |
| 77 | + tr_identity = trace(identity) |
| 78 | + |
| 79 | + return { |
| 80 | + "original_trace": tr, |
| 81 | + "transpose_trace": tr_transpose, |
| 82 | + "scalar_multiple_trace": tr_scalar, |
| 83 | + "scalar_factor": scalar, |
| 84 | + "identity_trace": tr_identity, |
| 85 | + "trace_equals_transpose": abs(tr - tr_transpose) < 1e-10, |
| 86 | + "scalar_property_check": abs(tr_scalar - scalar * tr) < 1e-10 |
| 87 | + } |
| 88 | + |
| 89 | + |
| 90 | +def test_trace() -> None: |
| 91 | + """ |
| 92 | + Test function for matrix trace calculation. |
| 93 | + |
| 94 | + >>> test_trace() # self running tests |
| 95 | + """ |
| 96 | + # Test 1: 2x2 matrix |
| 97 | + matrix_2x2 = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=float) |
| 98 | + tr_2x2 = trace(matrix_2x2) |
| 99 | + assert abs(tr_2x2 - 5.0) < 1e-10, "2x2 trace calculation failed" |
| 100 | + |
| 101 | + # Test 2: 3x3 matrix |
| 102 | + matrix_3x3 = np.array([[2.0, -1.0, 3.0], |
| 103 | + [4.0, 5.0, -2.0], |
| 104 | + [1.0, 0.0, 7.0]], dtype=float) |
| 105 | + tr_3x3 = trace(matrix_3x3) |
| 106 | + assert abs(tr_3x3 - 14.0) < 1e-10, "3x3 trace calculation failed" |
| 107 | + |
| 108 | + # Test 3: Identity matrix |
| 109 | + identity_4x4 = np.eye(4, dtype=float) |
| 110 | + tr_identity = trace(identity_4x4) |
| 111 | + assert abs(tr_identity - 4.0) < 1e-10, "Identity matrix trace should equal dimension" |
| 112 | + |
| 113 | + # Test 4: Zero matrix |
| 114 | + zero_matrix = np.zeros((3, 3), dtype=float) |
| 115 | + tr_zero = trace(zero_matrix) |
| 116 | + assert abs(tr_zero) < 1e-10, "Zero matrix should have zero trace" |
| 117 | + |
| 118 | + # Test 5: Trace properties |
| 119 | + test_matrix = np.array([[1.0, 2.0, 3.0], |
| 120 | + [4.0, 5.0, 6.0], |
| 121 | + [7.0, 8.0, 9.0]], dtype=float) |
| 122 | + properties = trace_properties_demo(test_matrix) |
| 123 | + assert properties["trace_equals_transpose"], "Trace should equal transpose trace" |
| 124 | + assert properties["scalar_property_check"], "Scalar multiplication property failed" |
| 125 | + |
| 126 | + # Test 6: Diagonal matrix |
| 127 | + diagonal_matrix = np.diag([1.0, 2.0, 3.0, 4.0]) |
| 128 | + tr_diagonal = trace(diagonal_matrix) |
| 129 | + expected = 1.0 + 2.0 + 3.0 + 4.0 |
| 130 | + assert abs(tr_diagonal - expected) < 1e-10, "Diagonal matrix trace should equal sum of diagonal elements" |
| 131 | + |
| 132 | + |
| 133 | +if __name__ == "__main__": |
| 134 | + import doctest |
| 135 | + |
| 136 | + doctest.testmod() |
| 137 | + test_trace() |
0 commit comments