@@ -136,4 +136,37 @@ def mbd(predict, actual):
136136
137137
138138def manual_accuracy (predict , actual ):
139+ """
140+ Calculate the accuracy score for binary classification predictions.
141+
142+ Accuracy = (Number of correct predictions) / (Total predictions)
143+
144+ Parameters:
145+ - predict: Predicted labels
146+ - actual: True labels
147+
148+ Returns:
149+ - float: Accuracy score between 0 and 1
150+
151+ Examples:
152+ >>> actual = [1, 0, 1, 1, 0]
153+ >>> predict = [1, 0, 1, 0, 0]
154+ >>> float(manual_accuracy(predict, actual))
155+ 0.8
156+
157+ >>> actual = [1, 1, 1]
158+ >>> predict = [1, 1, 1]
159+ >>> float(manual_accuracy(predict, actual))
160+ 1.0
161+
162+ >>> actual = [0, 0, 0]
163+ >>> predict = [1, 1, 1]
164+ >>> float(manual_accuracy(predict, actual))
165+ 0.0
166+
167+ >>> actual = [1, 0, 1, 0]
168+ >>> predict = [0, 1, 0, 1]
169+ >>> float(manual_accuracy(predict, actual))
170+ 0.0
171+ """
139172 return np .mean (np .array (actual ) == np .array (predict ))
0 commit comments