|
| 1 | +""" |
| 2 | +Classic Bresenham's Line Drawing Algorithm |
| 3 | +------------------------------------------ |
| 4 | +
|
| 5 | +Draws a line between two points (x1, y1) and (x2, y2) |
| 6 | +for slope 0 ≤ m ≤ 1, without floating-point operations. |
| 7 | +
|
| 8 | +Reference : https://www.geeksforgeeks.org/dsa/bresenhams-line-generation-algorithm/ |
| 9 | +
|
| 10 | +>>> classic_bresenham_line((0, 0), (5, 3)) |
| 11 | +[(0, 0), (1, 1), (2, 1), (3, 2), (4, 2), (5, 3)] |
| 12 | +""" |
| 13 | + |
| 14 | +import matplotlib.pyplot as plt |
| 15 | + |
| 16 | + |
| 17 | +def classic_bresenham_line( |
| 18 | + p1: tuple[int, int], p2: tuple[int, int] |
| 19 | +) -> list[tuple[int, int]]: |
| 20 | + x1, y1 = p1 |
| 21 | + x2, y2 = p2 |
| 22 | + |
| 23 | + dx = x2 - x1 |
| 24 | + dy = y2 - y1 |
| 25 | + p = 2 * dy - dx |
| 26 | + y = y1 |
| 27 | + points = [] |
| 28 | + |
| 29 | + for x in range(x1, x2 + 1): |
| 30 | + points.append((x, y)) |
| 31 | + if p < 0: |
| 32 | + p += 2 * dy |
| 33 | + else: |
| 34 | + y += 1 |
| 35 | + p += 2 * (dy - dx) |
| 36 | + return points |
| 37 | + |
| 38 | + |
| 39 | +if __name__ == "__main__": |
| 40 | + import doctest |
| 41 | + |
| 42 | + doctest.testmod() |
| 43 | + |
| 44 | + x1 = int(input("Enter x1: ")) |
| 45 | + y1 = int(input("Enter y1: ")) |
| 46 | + x2 = int(input("Enter x2: ")) |
| 47 | + y2 = int(input("Enter y2: ")) |
| 48 | + |
| 49 | + points = classic_bresenham_line((x1, y1), (x2, y2)) |
| 50 | + print("Generated points:", points) |
| 51 | + |
| 52 | + xs, ys = zip(*points) |
| 53 | + plt.plot(xs, ys, marker="o") |
| 54 | + plt.title("Classic Bresenham's Line Algorithm") |
| 55 | + plt.grid() |
| 56 | + plt.show() |
0 commit comments