Skip to content

Commit de8c057

Browse files
Merge pull request #1 from TheAlgorithms/master
Add Kadane's algorithm for maximum subarray sum
2 parents 2c15b8c + ca5b8c1 commit de8c057

File tree

4 files changed

+164
-2
lines changed

4 files changed

+164
-2
lines changed

.pre-commit-config.yaml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ repos:
1919
- id: auto-walrus
2020

2121
- repo: https://github.com/astral-sh/ruff-pre-commit
22-
rev: v0.14.7
22+
rev: v0.14.10
2323
hooks:
2424
- id: ruff-check
2525
- id: ruff-format
@@ -50,7 +50,7 @@ repos:
5050
- id: validate-pyproject
5151

5252
- repo: https://github.com/pre-commit/mirrors-mypy
53-
rev: v1.19.0
53+
rev: v1.19.1
5454
hooks:
5555
- id: mypy
5656
args:

DIRECTORY.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -398,6 +398,7 @@
398398
* [Minimum Squares To Represent A Number](dynamic_programming/minimum_squares_to_represent_a_number.py)
399399
* [Minimum Steps To One](dynamic_programming/minimum_steps_to_one.py)
400400
* [Minimum Tickets Cost](dynamic_programming/minimum_tickets_cost.py)
401+
* [Narcissistic Number](dynamic_programming/narcissistic_number.py)
401402
* [Optimal Binary Search Tree](dynamic_programming/optimal_binary_search_tree.py)
402403
* [Palindrome Partitioning](dynamic_programming/palindrome_partitioning.py)
403404
* [Range Sum Query](dynamic_programming/range_sum_query.py)
Lines changed: 103 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,103 @@
1+
"""
2+
Find all narcissistic numbers up to a given limit using dynamic programming.
3+
4+
A narcissistic number (also known as an Armstrong number or plus perfect number)
5+
is a number that is the sum of its own digits each raised to the power of the
6+
number of digits.
7+
8+
For example, 153 is a narcissistic number because 153 = 1^3 + 5^3 + 3^3.
9+
10+
This implementation uses dynamic programming with memoization to efficiently
11+
compute digit powers and find all narcissistic numbers up to a specified limit.
12+
13+
The DP optimization caches digit^power calculations. When searching through many
14+
numbers, the same digit power calculations occur repeatedly (e.g., 153, 351, 135
15+
all need 1^3, 5^3, 3^3). Memoization avoids these redundant calculations.
16+
17+
Examples of narcissistic numbers:
18+
Single digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
19+
Three digit: 153, 370, 371, 407
20+
Four digit: 1634, 8208, 9474
21+
Five digit: 54748, 92727, 93084
22+
23+
Reference: https://en.wikipedia.org/wiki/Narcissistic_number
24+
"""
25+
26+
27+
def find_narcissistic_numbers(limit: int) -> list[int]:
28+
"""
29+
Find all narcissistic numbers up to the given limit using dynamic programming.
30+
31+
This function uses memoization to cache digit power calculations, avoiding
32+
redundant computations across different numbers with the same digit count.
33+
34+
Args:
35+
limit: The upper bound for searching narcissistic numbers (exclusive)
36+
37+
Returns:
38+
list[int]: A sorted list of all narcissistic numbers below the limit
39+
40+
Examples:
41+
>>> find_narcissistic_numbers(10)
42+
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
43+
>>> find_narcissistic_numbers(160)
44+
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153]
45+
>>> find_narcissistic_numbers(400)
46+
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371]
47+
>>> find_narcissistic_numbers(1000)
48+
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407]
49+
>>> find_narcissistic_numbers(10000)
50+
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474]
51+
>>> find_narcissistic_numbers(1)
52+
[0]
53+
>>> find_narcissistic_numbers(0)
54+
[]
55+
"""
56+
if limit <= 0:
57+
return []
58+
59+
narcissistic_nums = []
60+
61+
# Memoization: cache[(power, digit)] = digit^power
62+
# This avoids recalculating the same power for different numbers
63+
power_cache: dict[tuple[int, int], int] = {}
64+
65+
def get_digit_power(digit: int, power: int) -> int:
66+
"""Get digit^power using memoization (DP optimization)."""
67+
if (power, digit) not in power_cache:
68+
power_cache[(power, digit)] = digit**power
69+
return power_cache[(power, digit)]
70+
71+
# Check each number up to the limit
72+
for number in range(limit):
73+
# Count digits
74+
num_digits = len(str(number))
75+
76+
# Calculate sum of powered digits using memoized powers
77+
remaining = number
78+
digit_sum = 0
79+
while remaining > 0:
80+
digit = remaining % 10
81+
digit_sum += get_digit_power(digit, num_digits)
82+
remaining //= 10
83+
84+
# Check if narcissistic
85+
if digit_sum == number:
86+
narcissistic_nums.append(number)
87+
88+
return narcissistic_nums
89+
90+
91+
if __name__ == "__main__":
92+
import doctest
93+
94+
doctest.testmod()
95+
96+
# Demonstrate the dynamic programming approach
97+
print("Finding all narcissistic numbers up to 10000:")
98+
print("(Using memoization to cache digit power calculations)")
99+
print()
100+
101+
narcissistic_numbers = find_narcissistic_numbers(10000)
102+
print(f"Found {len(narcissistic_numbers)} narcissistic numbers:")
103+
print(narcissistic_numbers)

other/sliding_window_maximum.py

Lines changed: 58 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,58 @@
1+
from collections import deque
2+
3+
4+
def sliding_window_maximum(numbers: list[int], window_size: int) -> list[int]:
5+
"""
6+
Return a list containing the maximum of each sliding window of size window_size.
7+
8+
This implementation uses a monotonic deque to achieve O(n) time complexity.
9+
10+
Args:
11+
numbers: List of integers representing the input array.
12+
window_size: Size of the sliding window (must be positive).
13+
14+
Returns:
15+
List of maximum values for each valid window.
16+
17+
Raises:
18+
ValueError: If window_size is not a positive integer.
19+
20+
Time Complexity: O(n) - each element is added and removed at most once
21+
Space Complexity: O(k) - deque stores at most window_size indices
22+
23+
Examples:
24+
>>> sliding_window_maximum([1, 3, -1, -3, 5, 3, 6, 7], 3)
25+
[3, 3, 5, 5, 6, 7]
26+
>>> sliding_window_maximum([9, 11], 2)
27+
[11]
28+
>>> sliding_window_maximum([], 3)
29+
[]
30+
>>> sliding_window_maximum([4, 2, 12, 3], 1)
31+
[4, 2, 12, 3]
32+
>>> sliding_window_maximum([1], 1)
33+
[1]
34+
"""
35+
if window_size <= 0:
36+
raise ValueError("Window size must be a positive integer")
37+
if not numbers:
38+
return []
39+
40+
result: list[int] = []
41+
index_deque: deque[int] = deque()
42+
43+
for current_index, current_value in enumerate(numbers):
44+
# Remove the element which is out of this window
45+
if index_deque and index_deque[0] == current_index - window_size:
46+
index_deque.popleft()
47+
48+
# Remove useless elements (smaller than current) from back
49+
while index_deque and numbers[index_deque[-1]] < current_value:
50+
index_deque.pop()
51+
52+
index_deque.append(current_index)
53+
54+
# Start adding to result once we have a full window
55+
if current_index >= window_size - 1:
56+
result.append(numbers[index_deque[0]])
57+
58+
return result

0 commit comments

Comments
 (0)