|
1 | 1 | """ |
2 | | -Build a binary tree from preorder + inorder or postorder + inorder traversals. |
| 2 | +Binary Tree Construction from Preorder/Inorder or Postorder/Inorder sequences. |
3 | 3 |
|
4 | | -This module provides two main functions: |
5 | | -- build_tree_from_preorder_and_inorder() |
6 | | -- build_tree_from_postorder_and_inorder() |
| 4 | +This module allows building a binary tree when given: |
7 | 5 |
|
8 | | -Each builds a binary tree represented by Node objects. |
| 6 | +- Preorder and inorder sequences |
| 7 | +- Postorder and inorder sequences |
9 | 8 |
|
10 | | -References: |
11 | | - - https://en.wikipedia.org/wiki/Binary_tree |
12 | | - - https://en.wikipedia.org/wiki/Tree_traversal |
| 9 | +Doctest examples are included for verification. |
13 | 10 | """ |
14 | 11 |
|
15 | | -from typing import Dict, List, Optional |
| 12 | +from __future__ import annotations # for forward references |
| 13 | +from typing import Optional |
16 | 14 |
|
17 | 15 |
|
18 | 16 | class Node: |
19 | | - """ |
20 | | - A class representing a node in a binary tree. |
21 | | -
|
22 | | - Attributes: |
23 | | - data (int): The value of the node. |
24 | | - left (Optional[Node]): Pointer to the left child. |
25 | | - right (Optional[Node]): Pointer to the right child. |
26 | | - """ |
| 17 | + """Class representing a node in a binary tree.""" |
27 | 18 |
|
28 | 19 | def __init__(self, data: int) -> None: |
29 | | - self.data = data |
30 | | - self.left: Optional[Node] = None |
31 | | - self.right: Optional[Node] = None |
| 20 | + self.data: int = data |
| 21 | + self.left: Node | None = None |
| 22 | + self.right: Node | None = None |
| 23 | + self.parent: Node | None = None |
32 | 24 |
|
33 | 25 |
|
34 | | -def inorder_traversal(root: Optional[Node]) -> List[int]: |
35 | | - """ |
36 | | - Return the inorder traversal of a binary tree as a list. |
37 | | -
|
38 | | - >>> root = Node(3) |
39 | | - >>> root.left = Node(2) |
40 | | - >>> root.right = Node(4) |
41 | | - >>> inorder_traversal(root) |
42 | | - [2, 3, 4] |
43 | | - """ |
| 26 | +def inorder_traversal(root: Node | None, out: list[int]) -> None: |
| 27 | + """Perform normal inorder traversal and store values in 'out' list.""" |
44 | 28 | if root is None: |
45 | | - return [] |
46 | | - return inorder_traversal(root.left) + [root.data] + inorder_traversal(root.right) |
| 29 | + return |
| 30 | + inorder_traversal(root.left, out) |
| 31 | + out.append(root.data) |
| 32 | + inorder_traversal(root.right, out) |
47 | 33 |
|
48 | 34 |
|
49 | 35 | def _build_tree_from_preorder( |
50 | | - preorder: List[int], |
| 36 | + preorder: list[int], |
51 | 37 | pre_start: int, |
52 | 38 | pre_end: int, |
53 | | - inorder_seq: List[int], |
| 39 | + inorder: list[int], |
54 | 40 | in_start: int, |
55 | 41 | in_end: int, |
56 | | - inorder_map: Dict[int, int], |
57 | | -) -> Optional[Node]: |
58 | | - """Helper function for building a tree recursively from preorder + inorder.""" |
| 42 | + in_map: dict[int, int], |
| 43 | +) -> Node | None: |
| 44 | + """Internal recursive function to build tree from preorder & inorder.""" |
59 | 45 | if pre_start > pre_end or in_start > in_end: |
60 | 46 | return None |
61 | 47 |
|
62 | | - root_value = preorder[pre_start] |
63 | | - root = Node(root_value) |
64 | | - in_root_index = inorder_map[root_value] |
65 | | - left_subtree_size = in_root_index - in_start |
| 48 | + root = Node(preorder[pre_start]) |
| 49 | + in_root_index = in_map[root.data] |
| 50 | + nums_left = in_root_index - in_start |
66 | 51 |
|
67 | 52 | root.left = _build_tree_from_preorder( |
68 | | - preorder, |
69 | | - pre_start + 1, |
70 | | - pre_start + left_subtree_size, |
71 | | - inorder_seq, |
72 | | - in_start, |
73 | | - in_root_index - 1, |
74 | | - inorder_map, |
| 53 | + preorder, pre_start + 1, pre_start + nums_left, |
| 54 | + inorder, in_start, in_root_index - 1, in_map |
75 | 55 | ) |
76 | 56 | root.right = _build_tree_from_preorder( |
77 | | - preorder, |
78 | | - pre_start + left_subtree_size + 1, |
79 | | - pre_end, |
80 | | - inorder_seq, |
81 | | - in_root_index + 1, |
82 | | - in_end, |
83 | | - inorder_map, |
| 57 | + preorder, pre_start + nums_left + 1, pre_end, |
| 58 | + inorder, in_root_index + 1, in_end, in_map |
84 | 59 | ) |
85 | | - return root |
86 | | - |
87 | 60 |
|
88 | | -def build_tree_from_preorder_and_inorder( |
89 | | - inorder_seq: List[int], preorder_seq: List[int] |
90 | | -) -> Optional[Node]: |
91 | | - """ |
92 | | - Build a binary tree from preorder and inorder traversals. |
93 | | -
|
94 | | - Args: |
95 | | - inorder_seq: The inorder traversal sequence. |
96 | | - preorder_seq: The preorder traversal sequence. |
| 61 | + return root |
97 | 62 |
|
98 | | - Returns: |
99 | | - Root node of the reconstructed binary tree. |
100 | 63 |
|
101 | | - >>> inorder_seq = [1, 2, 3, 4, 5] |
102 | | - >>> preorder_seq = [3, 2, 1, 4, 5] |
103 | | - >>> root = build_tree_from_preorder_and_inorder(inorder_seq, preorder_seq) |
104 | | - >>> inorder_traversal(root) |
105 | | - [1, 2, 3, 4, 5] |
106 | | - """ |
107 | | - inorder_map = {value: i for i, value in enumerate(inorder_seq)} |
108 | | - return _build_tree_from_preorder( |
109 | | - preorder_seq, |
110 | | - 0, |
111 | | - len(preorder_seq) - 1, |
112 | | - inorder_seq, |
113 | | - 0, |
114 | | - len(inorder_seq) - 1, |
115 | | - inorder_map, |
116 | | - ) |
| 64 | +def build_tree_from_preorder(inorder: list[int], preorder: list[int]) -> Node | None: |
| 65 | + """Build binary tree from preorder and inorder sequences.""" |
| 66 | + in_map = {val: idx for idx, val in enumerate(inorder)} |
| 67 | + return _build_tree_from_preorder(preorder, 0, len(preorder) - 1, inorder, 0, len(inorder) - 1, in_map) |
117 | 68 |
|
118 | 69 |
|
119 | 70 | def _build_tree_from_postorder( |
120 | | - postorder: List[int], |
| 71 | + postorder: list[int], |
121 | 72 | post_start: int, |
122 | 73 | post_end: int, |
123 | | - inorder_seq: List[int], |
| 74 | + inorder: list[int], |
124 | 75 | in_start: int, |
125 | 76 | in_end: int, |
126 | | - inorder_map: Dict[int, int], |
127 | | -) -> Optional[Node]: |
128 | | - """Helper function for building a tree recursively from postorder + inorder.""" |
| 77 | + in_map: dict[int, int], |
| 78 | +) -> Node | None: |
| 79 | + """ |
| 80 | + Internal recursive function to build tree from postorder & inorder. |
| 81 | +
|
| 82 | + Example: |
| 83 | + >>> inorder_seq = [1, 2, 3] |
| 84 | + >>> postorder_seq = [1, 3, 2] |
| 85 | + >>> inmp = {v:i for i,v in enumerate(inorder_seq)} |
| 86 | + >>> root = _build_tree_from_postorder(postorder_seq, 0, 2, inorder_seq, 0, 2, inmp) |
| 87 | + >>> root.data |
| 88 | + 2 |
| 89 | + >>> root.left.data |
| 90 | + 1 |
| 91 | + >>> root.right.data |
| 92 | + 3 |
| 93 | + """ |
129 | 94 | if post_start > post_end or in_start > in_end: |
130 | 95 | return None |
131 | 96 |
|
132 | | - root_value = postorder[post_end] |
133 | | - root = Node(root_value) |
134 | | - in_root_index = inorder_map[root_value] |
135 | | - left_subtree_size = in_root_index - in_start |
| 97 | + root = Node(postorder[post_end]) |
| 98 | + in_root_index = in_map[root.data] |
| 99 | + nums_left = in_root_index - in_start |
136 | 100 |
|
137 | 101 | root.left = _build_tree_from_postorder( |
138 | | - postorder, |
139 | | - post_start, |
140 | | - post_start + left_subtree_size - 1, |
141 | | - inorder_seq, |
142 | | - in_start, |
143 | | - in_root_index - 1, |
144 | | - inorder_map, |
| 102 | + postorder, post_start, post_start + nums_left - 1, |
| 103 | + inorder, in_start, in_root_index - 1, in_map |
145 | 104 | ) |
146 | 105 | root.right = _build_tree_from_postorder( |
147 | | - postorder, |
148 | | - post_start + left_subtree_size, |
149 | | - post_end - 1, |
150 | | - inorder_seq, |
151 | | - in_root_index + 1, |
152 | | - in_end, |
153 | | - inorder_map, |
| 106 | + postorder, post_start + nums_left, post_end - 1, |
| 107 | + inorder, in_root_index + 1, in_end, in_map |
154 | 108 | ) |
155 | | - return root |
156 | | - |
157 | 109 |
|
158 | | -def build_tree_from_postorder_and_inorder( |
159 | | - inorder_seq: List[int], postorder_seq: List[int] |
160 | | -) -> Optional[Node]: |
161 | | - """ |
162 | | - Build a binary tree from postorder and inorder traversals. |
163 | | -
|
164 | | - Args: |
165 | | - inorder_seq: The inorder traversal sequence. |
166 | | - postorder_seq: The postorder traversal sequence. |
| 110 | + return root |
167 | 111 |
|
168 | | - Returns: |
169 | | - Root node of the reconstructed binary tree. |
170 | 112 |
|
171 | | - >>> inorder_seq = [1, 2, 3, 4, 5] |
172 | | - >>> postorder_seq = [1, 2, 5, 4, 3] |
173 | | - >>> root = build_tree_from_postorder_and_inorder(inorder_seq, postorder_seq) |
174 | | - >>> inorder_traversal(root) |
175 | | - [1, 2, 3, 4, 5] |
176 | | - """ |
177 | | - inorder_map = {value: i for i, value in enumerate(inorder_seq)} |
178 | | - return _build_tree_from_postorder( |
179 | | - postorder_seq, |
180 | | - 0, |
181 | | - len(postorder_seq) - 1, |
182 | | - inorder_seq, |
183 | | - 0, |
184 | | - len(inorder_seq) - 1, |
185 | | - inorder_map, |
186 | | - ) |
| 113 | +def build_tree_from_postorder(inorder: list[int], postorder: list[int]) -> Node | None: |
| 114 | + """Build binary tree from postorder and inorder sequences.""" |
| 115 | + in_map = {val: idx for idx, val in enumerate(inorder)} |
| 116 | + return _build_tree_from_postorder(postorder, 0, len(postorder) - 1, inorder, 0, len(inorder) - 1, in_map) |
187 | 117 |
|
188 | 118 |
|
| 119 | +# Optional example usage |
189 | 120 | if __name__ == "__main__": |
190 | | - # Example usage for manual verification (not part of algorithmic test) |
191 | 121 | inorder_seq = [1, 2, 3, 4, 5] |
192 | 122 | preorder_seq = [3, 2, 1, 4, 5] |
193 | 123 | postorder_seq = [1, 2, 5, 4, 3] |
194 | 124 |
|
195 | | - root_pre = build_tree_from_preorder_and_inorder(inorder_seq, preorder_seq) |
196 | | - print("Inorder (from Preorder+Inorder):", inorder_traversal(root_pre)) |
| 125 | + tree_pre = build_tree_from_preorder(inorder_seq, preorder_seq) |
| 126 | + tree_post = build_tree_from_postorder(inorder_seq, postorder_seq) |
197 | 127 |
|
198 | | - root_post = build_tree_from_postorder_and_inorder(inorder_seq, postorder_seq) |
199 | | - print("Inorder (from Postorder+Inorder):", inorder_traversal(root_post)) |
| 128 | + out: list[int] = [] |
| 129 | + inorder_traversal(tree_pre, out) |
| 130 | + print("Inorder from Preorder Tree:", out) |
| 131 | + out.clear() |
| 132 | + inorder_traversal(tree_post, out) |
| 133 | + print("Inorder from Postorder Tree:", out) |
0 commit comments