From 7381dfa0b4602b41a51b0d183772bb7f20e78d8b Mon Sep 17 00:00:00 2001 From: Usrer1 Date: Thu, 30 Oct 2025 23:17:06 +0530 Subject: [PATCH 1/2] Add svm.py to machine_learning --- machine_learning/svm.py | 32 ++++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) create mode 100644 machine_learning/svm.py diff --git a/machine_learning/svm.py b/machine_learning/svm.py new file mode 100644 index 000000000000..4fbd07b8bd64 --- /dev/null +++ b/machine_learning/svm.py @@ -0,0 +1,32 @@ +from sklearn.model_selection import GridSearchCV +import numpy as np +import matplotlib.pyplot as plt +from sklearn import datasets +from sklearn.model_selection import train_test_split +from sklearn.svm import SVC +from sklearn.metrics import accuracy_score, classification_report, confusion_matrix +from sklearn.datasets import load_breast_cancer +data=load_breast_cancer() +X,y=data.data,data.target + +X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=42) + +param_grid={ + 'C':[1, 10], + 'kernel':['linear','rbf'], + 'gamma':['scale'] +} + +svm=SVC(random_state=42) + +grid_search=GridSearchCV(svm, param_grid, cv=3, scoring='accuracy', n_jobs=-1, verbose=1) +grid_search.fit(X_train,y_train) + +print("Best parameters:",grid_search.best_params_) +print("Best cross validation score",grid_search.best_score_) + +best_svm=grid_search.best_estimator_ +y_pred=best_svm.predict(X_test) +test_accuracy=accuracy_score(y_test,y_pred) +print(f"Test accuracy:,{test_accuracy:.2f}") + From 19378c6590776b37d9788ddfe4474dd75c6f0bf0 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Thu, 30 Oct 2025 17:52:13 +0000 Subject: [PATCH 2/2] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- machine_learning/svm.py | 34 +++++++++++++++++----------------- 1 file changed, 17 insertions(+), 17 deletions(-) diff --git a/machine_learning/svm.py b/machine_learning/svm.py index 4fbd07b8bd64..9e03a2306706 100644 --- a/machine_learning/svm.py +++ b/machine_learning/svm.py @@ -6,27 +6,27 @@ from sklearn.svm import SVC from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from sklearn.datasets import load_breast_cancer -data=load_breast_cancer() -X,y=data.data,data.target -X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=42) +data = load_breast_cancer() +X, y = data.data, data.target -param_grid={ - 'C':[1, 10], - 'kernel':['linear','rbf'], - 'gamma':['scale'] -} +X_train, X_test, y_train, y_test = train_test_split( + X, y, test_size=0.3, random_state=42 +) -svm=SVC(random_state=42) +param_grid = {"C": [1, 10], "kernel": ["linear", "rbf"], "gamma": ["scale"]} -grid_search=GridSearchCV(svm, param_grid, cv=3, scoring='accuracy', n_jobs=-1, verbose=1) -grid_search.fit(X_train,y_train) +svm = SVC(random_state=42) -print("Best parameters:",grid_search.best_params_) -print("Best cross validation score",grid_search.best_score_) +grid_search = GridSearchCV( + svm, param_grid, cv=3, scoring="accuracy", n_jobs=-1, verbose=1 +) +grid_search.fit(X_train, y_train) -best_svm=grid_search.best_estimator_ -y_pred=best_svm.predict(X_test) -test_accuracy=accuracy_score(y_test,y_pred) -print(f"Test accuracy:,{test_accuracy:.2f}") +print("Best parameters:", grid_search.best_params_) +print("Best cross validation score", grid_search.best_score_) +best_svm = grid_search.best_estimator_ +y_pred = best_svm.predict(X_test) +test_accuracy = accuracy_score(y_test, y_pred) +print(f"Test accuracy:,{test_accuracy:.2f}")