@@ -3637,7 +3637,7 @@ aggregate_results <- function(all_loaded) {
36373637 return (results )
36383638}
36393639
3640- # ## Helper function: get tuneGrid for models
3640+ # ## Helper function: get tuneGrid for models --->TO DO: might need to re-think how to choose how many values are gonna be evaluated
36413641get_tune_grid = function (method , train_data ){
36423642 set.seed(123 )
36433643
@@ -3652,35 +3652,45 @@ get_tune_grid = function(method, train_data){
36523652 }
36533653 if (method == " rf" ){
36543654 n_features <- ncol(train_data ) - 1
3655- return (data.frame (mtry = unique(round(seq(n_features * 0.2 , n_features * 0.9 , length.out = 5 )))))
3655+ return (data.frame (mtry = unique(round(seq(n_features * 0.2 , n_features * 0.9 , length.out = 3 )))))
36563656 }
36573657 if (method == " svmRadial" ){
3658- return (expand.grid(sigma = 0.01 , C = c(0.25 , 0.5 , 1 , 2 , 4 )))
3658+ # Typical small-to-moderate RBF widths + modest C range
3659+ return (expand.grid(
3660+ sigma = c(0.01 , 0.05 , 0.1 ),
3661+ C = c(0.5 , 1 , 2 )
3662+ ))
36593663 }
36603664 if (method == " treebag" ){
36613665 return (data.frame (parameter = " none" ))
36623666 }
36633667 if (method == " C5.0" ){
3664- return (expand.grid(trials = c(1 , 5 , 10 ), model = " tree" , winnow = c(TRUE , FALSE )))
3668+ return (expand.grid(
3669+ trials = c(1 , 5 , 10 ),
3670+ model = " tree" ,
3671+ winnow = c(TRUE , FALSE )
3672+ ))
36653673 }
36663674 if (method == " knn" ){
3667- return (expand.grid(k = c(3 , 5 , 7 , 9 , 11 )))
3675+ # Odd ks to avoid ties; small-to-moderate neighborhood sizes
3676+ return (expand.grid(k = c(5 , 7 , 9 )))
36683677 }
36693678 if (method == " rpart" ){
3670- return (expand.grid(cp = seq(0.001 , 0.1 , length = 10 )))
3679+ # Coarse cp sweep across low/med/high regularization
3680+ return (expand.grid(cp = c(0.001 , 0.01 , 0.1 )))
36713681 }
36723682 if (method == " svmLinear" ){
3673- return (expand.grid(C = c(0.25 , 0. 5 , 1 , 2 , 4 )))
3683+ return (expand.grid(C = c(0.5 , 1 , 2 )))
36743684 }
36753685 if (method == " xgbTree" ){
36763686 return (expand.grid(
3677- nrounds = 100 ,
3678- max_depth = c(3 , 6 , 9 ),
3679- eta = c(0.01 , 0.1 , 0.3 ),
3680- gamma = 0 ,
3681- colsample_bytree = 0.8 ,
3682- min_child_weight = 1 ,
3683- subsample = 0.8
3687+ nrounds = c( 100 , 300 , 500 ) ,
3688+ max_depth = c(3 , 6 , 9 ),
3689+ eta = c(0.01 , 0.1 , 0.3 ),
3690+ gamma = 0 , # fixed default
3691+ colsample_bytree = 0.8 , # fixed default
3692+ min_child_weight = 1 , # fixed default
3693+ subsample = 0.8 # fixed default
36843694 ))
36853695 }
36863696
0 commit comments