@@ -283,7 +283,7 @@ feature.selection.boruta <- function(data, iterations = NULL, fix = FALSE, tenta
283283# ' }
284284# '
285285# '
286- compute_k_fold_CV = function (model , k_folds , n_rep , stacking = FALSE , metric = " Accuracy" , file_name = NULL , LODO = FALSE ,
286+ compute_k_fold_CV = function (train_data , k_folds , n_rep , stacking = FALSE , metric = " Accuracy" , file_name = NULL , LODO = FALSE ,
287287 ncores = NULL , return = FALSE , fold_construction_fun = NULL ,
288288 fold_construction_args_fixed = NULL ,
289289 fold_construction_args_tunable = NULL ){
@@ -296,19 +296,19 @@ compute_k_fold_CV = function(model, k_folds, n_rep, stacking = FALSE, metric = "
296296 stop(" The metric assigned is not supported. Choose either accuracy or AUC." )
297297 }
298298
299- if (is.null(fold_construction_fun )){ # ## Preprocessing (remove collinear variables and low variance)
300- if (LODO == TRUE ){
301- train_data = preprocess_features(model %> % dplyr :: select(- dataset ), cor_thresh = 0.9 , target_col = " target" ) %> %
302- dplyr :: mutate(dataset = model $ dataset )
303- }else {
304- train_data = preprocess_features(model , cor_thresh = 0.9 , target_col = " target" )
305- }
306- }else {
307- train_data = model
308- }
309-
310- rm(model ) # Clean memory
311- gc()
299+ # # if(is.null(fold_construction_fun)){ ### Preprocessing (remove collinear variables and low variance)
300+ # if(LODO == TRUE){
301+ # train_data = preprocess_features(model %>% dplyr::select(-dataset), cor_thresh = 0.9, target_col = "target") %>%
302+ # dplyr::mutate(dataset = model$dataset)
303+ # }else{
304+ # train_data = preprocess_features(model, cor_thresh = 0.9, target_col = "target")
305+ # }
306+ # # }else{
307+ # # train_data = model
308+ # # }
309+
310+ # rm(model) #Clean memory
311+ # gc()
312312
313313 # ######## Machine Learning models
314314
0 commit comments