diff --git a/app/utils.py b/app/utils.py index ddc8a99..64839d9 100644 --- a/app/utils.py +++ b/app/utils.py @@ -1,5 +1,6 @@ import json import os +import tempfile from dataclasses import asdict from typing import BinaryIO, TextIO @@ -94,34 +95,44 @@ def write_result(self, result: dict, file: TextIO): json.dump(result, file) -def load_audio(file: BinaryIO, encode=True, sr: int = CONFIG.SAMPLE_RATE): +def load_audio(file, encode: bool = True, sr: int = CONFIG.SAMPLE_RATE): """ Open an audio file object and read as mono waveform, resampling as necessary. - Modified from https://github.com/openai/whisper/blob/main/whisper/audio.py to accept a file object + Always writes the input to a temp file so ffmpeg has a seekable source. + Parameters ---------- - file: BinaryIO - The audio file like object - encode: Boolean - If true, encode audio stream to WAV before sending to whisper - sr: int - The sample rate to resample the audio if necessary + file : BinaryIO + The audio file-like object. + encode : bool + If true, re-encode audio stream to PCM WAV-like raw s16le before returning. + sr : int + The sample rate to resample the audio if necessary. + Returns ------- - A NumPy array containing the audio waveform, in float32 dtype. + np.ndarray + A float32 NumPy array containing the waveform in range [-1.0, 1.0]. """ - if encode: - try: - # This launches a subprocess to decode audio while down-mixing and resampling as necessary. - # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed. + data = file.read() + + if not encode: + # Raw PCM mode (assume s16le bytes already). + return np.frombuffer(data, np.int16).astype(np.float32) / 32768.0 + + try: + with tempfile.NamedTemporaryFile(suffix=".audio", delete=True) as tmp: + tmp.write(data) + tmp.flush() + out, _ = ( - ffmpeg.input("pipe:", threads=0) - .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr) - .run(cmd="ffmpeg", capture_stdout=True, capture_stderr=True, input=file.read()) + ffmpeg + .input(tmp.name) + .output("pipe:", format="s16le", acodec="pcm_s16le", ac=1, ar=sr) + .global_args("-nostdin", "-v", "error") + .run(cmd="ffmpeg", capture_stdout=True, capture_stderr=True) ) - except ffmpeg.Error as e: - raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e - else: - out = file.read() + except ffmpeg.Error as e: + raise RuntimeError(f"Failed to load audio: {e.stderr.decode(errors='ignore')}") from e - return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 + return np.frombuffer(out, np.int16).astype(np.float32) / 32768.0