Skip to content

[P4] Repomix Integration #8

@jeremyeder

Description

@jeremyeder

Coldstart Implementation Prompt: Repomix Integration

Priority: P4
Repository: agentready (https://github.com/redhat/agentready)
Branch Strategy: Create feature branch from main


Context

You are implementing a feature for AgentReady, a repository quality assessment tool for AI-assisted development.

Repository Structure

agentready/
├── src/agentready/          # Source code
│   ├── models/              # Data models
│   ├── services/            # Scanner orchestration
│   ├── assessors/           # Attribute assessments
│   ├── reporters/           # Report generation (HTML, Markdown, JSON)
│   ├── templates/           # Jinja2 templates
│   └── cli/                 # Click-based CLI
├── tests/                   # Test suite (unit + integration)
├── examples/                # Example reports
└── specs/                   # Feature specifications

Key Technologies

  • Python 3.11+
  • Click (CLI framework)
  • Jinja2 (templating)
  • Pytest (testing)
  • Black, isort, ruff (code quality)

Development Workflow

  1. Create feature branch: git checkout -b NNN-feature-name
  2. Implement changes with tests
  3. Run linters: black . && isort . && ruff check .
  4. Run tests: pytest
  5. Commit with conventional commits
  6. Create PR to main

Feature Requirements

Repomix Integration

Priority: P4 (Enhancement)

Description: Integrate with Repomix (https://github.com/yamadashy/repomix) to generate AI-optimized repository context files for both new and existing repositories.

Requirements:

  • Generate Repomix output for existing repositories
  • Include Repomix configuration in bootstrapped new repositories
  • Optional GitHub Actions integration for automatic regeneration
  • Support Repomix configuration customization
  • Integrate with agentready assessment workflow

Use Case:

# Generate Repomix output for current repository
agentready repomix-generate

# Bootstrap new repo with Repomix integration
agentready init --repo my-project --language python --repomix

# This would:
# 1. Set up Repomix configuration
# 2. Add GitHub Action for automatic regeneration
# 3. Generate initial repository context file
# 4. Include Repomix output in .gitignore appropriately

Features:

  • Automatic Repomix configuration based on repository language
  • GitHub Actions workflow for CI/CD integration
  • Custom ignore patterns aligned with agentready assessment
  • Support for both markdown and XML output formats
  • Integration with agentready bootstrap command

Related: Repository initialization, AI-assisted development workflows

Notes:

  • Repomix generates optimized repository context for LLMs
  • Could enhance CLAUDE.md with reference to Repomix output
  • Should align with existing .gitignore patterns
  • Consider adding Repomix freshness check to assessment attributes
  • May improve agentready's own repository understanding


Implementation Checklist

Before you begin:

  • Read CLAUDE.md for project context
  • Review existing similar features (if applicable)
  • Understand the data model (src/agentready/models/)
  • Check acceptance criteria in feature description

Implementation steps:

  • Create feature branch
  • Implement core functionality
  • Add unit tests (target >80% coverage)
  • Add integration tests (if applicable)
  • Run linters and fix any issues
  • Update documentation (README.md, CLAUDE.md if needed)
  • Self-test the feature end-to-end
  • Create PR with descriptive title and body

Code quality requirements:

  • All code formatted with black (88 char lines)
  • Imports sorted with isort
  • No ruff violations
  • All tests passing
  • Type hints where appropriate
  • Docstrings for public APIs

Key Files to Review

Based on this feature, you should review:

  • src/agentready/models/ - Understand Assessment, Finding, Attribute models
  • src/agentready/services/scanner.py - Scanner orchestration
  • src/agentready/assessors/base.py - BaseAssessor pattern
  • src/agentready/reporters/ - Report generation
  • CLAUDE.md - Project overview and guidelines
  • BACKLOG.md - Full context of this feature

Testing Strategy

For this feature, ensure:

  1. Unit tests for core logic (80%+ coverage)
  2. Integration tests for end-to-end workflows
  3. Edge case tests (empty inputs, missing files, errors)
  4. Error handling tests (graceful degradation)

Run tests:

# All tests
pytest

# With coverage
pytest --cov=src/agentready --cov-report=html

# Specific test file
pytest tests/unit/test_feature.py -v

Success Criteria

This feature is complete when:

  • ✅ All acceptance criteria from feature description are met
  • ✅ Tests passing with >80% coverage for new code
  • ✅ All linters passing (black, isort, ruff)
  • ✅ Documentation updated
  • ✅ PR created with clear description
  • ✅ Self-tested end-to-end

Questions to Clarify (if needed)

If anything is unclear during implementation:

  1. Check CLAUDE.md for project patterns
  2. Review similar existing features
  3. Ask for clarification in PR comments
  4. Reference the original backlog item

Getting Started

# Clone and setup
git clone https://github.com/redhat/agentready.git
cd agentready

# Create virtual environment
uv venv && source .venv/bin/activate

# Install dependencies
uv pip install -e .
uv pip install pytest black isort ruff

# Create feature branch
git checkout -b 008-repomix-integration

# Start implementing!

Note: This is a coldstart prompt. You have all context needed to implement this feature independently. Read the linked files, follow the patterns, and deliver high-quality code with tests.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions