@@ -1005,20 +1005,20 @@ def interpolate(
10051005 ----------
10061006 method : str, default 'linear'
10071007 Interpolation technique to use. One of:
1008- * 'linear': Ignore the index and treat the values as equally spaced.
1008+ * 'linear': Ignore the index and treat the values as equally spaced.
10091009 This is the only method supported on MultiIndexes.
1010- * 'time': Works on daily and higher resolution data to interpolate
1010+ * 'time': Works on daily and higher resolution data to interpolate
10111011 given length of interval.
10121012 * 'index', 'values': use the actual numerical values of the index.
10131013 * 'pad': Fill in NaNs using existing values.
1014- * 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric',
1015- 'polynomial': Passed to scipy.interpolate.interp1d, whereas 'spline'
1016- is passed to scipy.interpolate.UnivariateSpline. These methods use
1014+ * 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric',
1015+ 'polynomial': Passed to scipy.interpolate.interp1d, whereas 'spline'
1016+ is passed to scipy.interpolate.UnivariateSpline. These methods use
10171017 the numerical values of the index.
1018- Both 'polynomial' and 'spline' require that you also specify an
1018+ Both 'polynomial' and 'spline' require that you also specify an
10191019 order (int), e.g. arr.interpolate(method='polynomial', order=5).
1020- * 'krogh', 'piecewise_polynomial', 'spline', 'pchip', 'akima',
1021- 'cubicspline': Wrappers around the SciPy interpolation methods
1020+ * 'krogh', 'piecewise_polynomial', 'spline', 'pchip', 'akima',
1021+ 'cubicspline': Wrappers around the SciPy interpolation methods
10221022 of similar names. See Notes.
10231023 * 'from_derivatives': Refers to scipy.interpolate.BPoly.from_derivatives.
10241024 axis : int
@@ -1030,14 +1030,14 @@ def interpolate(
10301030 limit_direction : {'forward', 'backward', 'both'}
10311031 Consecutive NaNs will be filled in this direction.
10321032 * If 'method' is 'pad' or 'ffill', 'limit_direction' must be 'forward'.
1033- * If 'method' is 'backfill' or 'bfill', 'limit_direction' must be
1033+ * If 'method' is 'backfill' or 'bfill', 'limit_direction' must be
10341034 'backward'.
1035- Raises ValueError if limit_direction is 'forward' or 'both' and method
1035+ Raises ValueError if limit_direction is 'forward' or 'both' and method
10361036 is 'backfill' or 'bfill'.
1037- Raises ValueError if limit_direction is 'backward' or 'both' and method
1037+ Raises ValueError if limit_direction is 'backward' or 'both' and method
10381038 is 'pad' or 'ffill'.
10391039 limit_area : {'inside', 'outside'} or None
1040- If limit is specified, consecutive NaNs will be filled with this
1040+ If limit is specified, consecutive NaNs will be filled with this
10411041 restriction.
10421042 * None: No fill restriction.
10431043 * 'inside': Only fill NaNs surrounded by valid values (interpolate).
@@ -1060,11 +1060,11 @@ def interpolate(
10601060 Notes
10611061 -----
10621062 - All parameters must be specified as keyword arguments.
1063- - The 'krogh', 'piecewise_polynomial', 'spline', 'pchip' and 'akima'
1064- methods are wrappers around the respective SciPy implementations of
1063+ - The 'krogh', 'piecewise_polynomial', 'spline', 'pchip' and 'akima'
1064+ methods are wrappers around the respective SciPy implementations of
10651065 similar names. These use the actual numerical values of the index.
10661066 - For 1D NumpyExtensionArray, use 0 for the `axis` parameter.
1067-
1067+
10681068 Examples
10691069 --------
10701070 >>> arr = pd.arrays.NumpyExtensionArray(np.array([0, np.nan, 2, np.nan, 4]))
0 commit comments