Skip to content

Commit 7fc7e84

Browse files
committed
remove vllm tests
1 parent f9c4142 commit 7fc7e84

File tree

1 file changed

+78
-78
lines changed

1 file changed

+78
-78
lines changed

tests/llms/test_vllm.py

Lines changed: 78 additions & 78 deletions
Original file line numberDiff line numberDiff line change
@@ -1,104 +1,104 @@
1-
from unittest.mock import MagicMock, patch
1+
# from unittest.mock import MagicMock, patch
22

3-
import pytest
3+
# import pytest
44

5-
from promptolution.llms import VLLM
5+
# from promptolution.llms import VLLM
66

7-
vllm = pytest.importorskip("vllm")
8-
transformers = pytest.importorskip("transformers")
7+
# # vllm = pytest.importorskip("vllm")
8+
# transformers = pytest.importorskip("transformers")
99

1010

11-
@pytest.fixture
12-
def mock_vllm_dependencies():
13-
"""Set up comprehensive mocks for VLLM dependencies."""
14-
# Mock the key components
15-
with patch("vllm.LLM") as mock_llm_class, patch("vllm.SamplingParams") as mock_sampling_params, patch(
16-
"transformers.AutoTokenizer"
17-
) as mock_tokenizer_class:
18-
# Create and configure mock LLM
19-
mock_llm = MagicMock()
20-
mock_llm_class.return_value = mock_llm
11+
# @pytest.fixture
12+
# def mock_vllm_dependencies():
13+
# """Set up comprehensive mocks for VLLM dependencies."""
14+
# # Mock the key components
15+
# with patch("vllm.LLM") as mock_llm_class, patch("vllm.SamplingParams") as mock_sampling_params, patch(
16+
# "transformers.AutoTokenizer"
17+
# ) as mock_tokenizer_class:
18+
# # Create and configure mock LLM
19+
# mock_llm = MagicMock()
20+
# mock_llm_class.return_value = mock_llm
2121

22-
# Configure LLM engine with cache config for batch size calculation
23-
mock_cache_config = MagicMock()
24-
mock_cache_config.num_gpu_blocks = 100
25-
mock_cache_config.block_size = 16
22+
# # Configure LLM engine with cache config for batch size calculation
23+
# mock_cache_config = MagicMock()
24+
# mock_cache_config.num_gpu_blocks = 100
25+
# mock_cache_config.block_size = 16
2626

27-
mock_executor = MagicMock()
28-
mock_executor.cache_config = mock_cache_config
27+
# mock_executor = MagicMock()
28+
# mock_executor.cache_config = mock_cache_config
2929

30-
mock_engine = MagicMock()
31-
mock_engine.model_executor = mock_executor
30+
# mock_engine = MagicMock()
31+
# mock_engine.model_executor = mock_executor
3232

33-
mock_llm.llm_engine = mock_engine
33+
# mock_llm.llm_engine = mock_engine
3434

35-
# Set up the generate method to return appropriate number of responses
36-
def mock_generate_side_effect(prompts_list, *args, **kwargs):
37-
"""Return one output per input prompt"""
38-
return [
39-
MagicMock(outputs=[MagicMock(text=f"Mocked response for prompt {i}")])
40-
for i, _ in enumerate(prompts_list)
41-
]
35+
# # Set up the generate method to return appropriate number of responses
36+
# def mock_generate_side_effect(prompts_list, *args, **kwargs):
37+
# """Return one output per input prompt"""
38+
# return [
39+
# MagicMock(outputs=[MagicMock(text=f"Mocked response for prompt {i}")])
40+
# for i, _ in enumerate(prompts_list)
41+
# ]
4242

43-
# Use side_effect instead of return_value for dynamic behavior
44-
mock_llm.generate.side_effect = mock_generate_side_effect
43+
# # Use side_effect instead of return_value for dynamic behavior
44+
# mock_llm.generate.side_effect = mock_generate_side_effect
4545

46-
# Configure mock tokenizer
47-
mock_tokenizer = MagicMock()
48-
mock_tokenizer.encode.return_value = [1, 2, 3, 4, 5]
49-
mock_tokenizer.apply_chat_template.return_value = "<mocked_chat_template>"
50-
mock_tokenizer_class.from_pretrained.return_value = mock_tokenizer
46+
# # Configure mock tokenizer
47+
# mock_tokenizer = MagicMock()
48+
# mock_tokenizer.encode.return_value = [1, 2, 3, 4, 5]
49+
# mock_tokenizer.apply_chat_template.return_value = "<mocked_chat_template>"
50+
# mock_tokenizer_class.from_pretrained.return_value = mock_tokenizer
5151

52-
yield {
53-
"llm_class": mock_llm_class,
54-
"llm": mock_llm,
55-
"tokenizer_class": mock_tokenizer_class,
56-
"tokenizer": mock_tokenizer,
57-
"sampling_params": mock_sampling_params,
58-
}
52+
# yield {
53+
# "llm_class": mock_llm_class,
54+
# "llm": mock_llm,
55+
# "tokenizer_class": mock_tokenizer_class,
56+
# "tokenizer": mock_tokenizer,
57+
# "sampling_params": mock_sampling_params,
58+
# }
5959

6060

61-
def test_vllm_get_response(mock_vllm_dependencies):
62-
"""Test that VLLM._get_response works correctly with explicit batch_size."""
63-
# Create VLLM instance with explicit batch_size to avoid calculation
64-
vllm = VLLM(model_id="mock-model", batch_size=4) # Set an explicit batch_size to avoid computation
61+
# def test_vllm_get_response(mock_vllm_dependencies):
62+
# """Test that VLLM._get_response works correctly with explicit batch_size."""
63+
# # Create VLLM instance with explicit batch_size to avoid calculation
64+
# vllm = VLLM(model_id="mock-model", batch_size=4) # Set an explicit batch_size to avoid computation
6565

66-
# Call get_response
67-
prompts = ["Test prompt 1", "Test prompt 2"]
68-
system_prompts = ["Be helpful", "Be concise"]
69-
responses = vllm._get_response(prompts, system_prompts)
66+
# # Call get_response
67+
# prompts = ["Test prompt 1", "Test prompt 2"]
68+
# system_prompts = ["Be helpful", "Be concise"]
69+
# responses = vllm._get_response(prompts, system_prompts)
7070

71-
# Verify tokenizer was used correctly
72-
assert mock_vllm_dependencies["tokenizer"].apply_chat_template.call_count == 2
71+
# # Verify tokenizer was used correctly
72+
# assert mock_vllm_dependencies["tokenizer"].apply_chat_template.call_count == 2
7373

74-
# Verify LLM generate was called
75-
mock_vllm_dependencies["llm"].generate.assert_called_once()
74+
# # Verify LLM generate was called
75+
# mock_vllm_dependencies["llm"].generate.assert_called_once()
7676

77-
# Verify responses
78-
assert len(responses) == 2
79-
assert responses[0] == "Mocked response for prompt 0"
80-
assert responses[1] == "Mocked response for prompt 1"
77+
# # Verify responses
78+
# assert len(responses) == 2
79+
# assert responses[0] == "Mocked response for prompt 0"
80+
# assert responses[1] == "Mocked response for prompt 1"
8181

8282

83-
def test_vllm_with_auto_batch_size(mock_vllm_dependencies):
84-
"""Test VLLM with automatic batch size calculation."""
85-
# Create VLLM instance with batch_size=None to trigger auto calculation
86-
vllm = VLLM(model_id="mock-model", batch_size=None, max_model_len=2048)
83+
# def test_vllm_with_auto_batch_size(mock_vllm_dependencies):
84+
# """Test VLLM with automatic batch size calculation."""
85+
# # Create VLLM instance with batch_size=None to trigger auto calculation
86+
# vllm = VLLM(model_id="mock-model", batch_size=None, max_model_len=2048)
8787

88-
# Force a non-zero batch size
89-
mock_vllm_dependencies["llm"].llm_engine.model_executor.cache_config.num_gpu_blocks = 1000
88+
# # Force a non-zero batch size
89+
# mock_vllm_dependencies["llm"].llm_engine.model_executor.cache_config.num_gpu_blocks = 1000
9090

91-
# Create a new instance to recalculate batch size
92-
vllm = VLLM(model_id="mock-model", batch_size=None, max_model_len=2048)
91+
# # Create a new instance to recalculate batch size
92+
# vllm = VLLM(model_id="mock-model", batch_size=None, max_model_len=2048)
9393

94-
# Verify batch_size is greater than zero
95-
assert vllm.batch_size > 0, "Batch size should be greater than zero"
94+
# # Verify batch_size is greater than zero
95+
# assert vllm.batch_size > 0, "Batch size should be greater than zero"
9696

97-
# Test with a single prompt
98-
prompts = ["Test prompt"]
99-
system_prompts = ["Be helpful"]
100-
responses = vllm._get_response(prompts, system_prompts)
97+
# # Test with a single prompt
98+
# prompts = ["Test prompt"]
99+
# system_prompts = ["Be helpful"]
100+
# responses = vllm._get_response(prompts, system_prompts)
101101

102-
# Verify we get exactly one response for one prompt
103-
assert len(responses) == 1
104-
assert responses[0] == "Mocked response for prompt 0"
102+
# # Verify we get exactly one response for one prompt
103+
# assert len(responses) == 1
104+
# assert responses[0] == "Mocked response for prompt 0"

0 commit comments

Comments
 (0)