@@ -291,32 +291,32 @@ The algorithmic complexity of the conversion process is:
291291Given: bytes = 1536, default settings (decimal, JEDEC standard)
292292
2932931 . Calculate exponent: $e = \lfloor \frac{\ln(1536)}{\ln(1000)} \rfloor = \lfloor 1.062 \rfloor = 1$
294- 2 . Lookup divisor: $\text{DECIMAL \_ POWERS} [ 1] = 1000$
295- 3 . Calculate value: $\text{ value} = \frac{1536}{1000} = 1.536$
296- 4 . Apply rounding (2 decimal places): $1.536 \rightarrow 1.54$
294+ 2 . Lookup divisor: DECIMAL_POWERS [ 1] = 1000
295+ 3 . Calculate value: $value = \frac{1536}{1000} = 1.536$
296+ 4 . Apply rounding (2 decimal places): $1.536 \to 1.54$
2972975 . Result: "1.54 KB"
298298
299299#### Binary Conversion (1536 bytes)
300300Given: bytes = 1536, base = 2 (IEC standard)
301301
3023021 . Calculate exponent: $e = \lfloor \frac{\ln(1536)}{\ln(1024)} \rfloor = \lfloor 1.084 \rfloor = 1$
303- 2 . Lookup divisor: $\text{BINARY \_ POWERS} [ 1] = 1024$
304- 3 . Calculate value: $\text{ value} = \frac{1536}{1024} = 1.5$
303+ 2 . Lookup divisor: BINARY_POWERS [ 1] = 1024
304+ 3 . Calculate value: $value = \frac{1536}{1024} = 1.5$
3053054 . Result: "1.5 KiB"
306306
307307#### Bits Conversion with Default Base (1024 bytes)
308308Given: bytes = 1024, bits = true, default settings (base = 10)
309309
310- 1 . Calculate exponent: $e = \lfloor \log _ {1000} (1024) \rfloor = \lfloor 1.003 \rfloor = 1$
311- 2 . Calculate value: $\text{ value} = \frac{1024 \cdot 8}{1000^1 } = 8.192$
312- 3 . Apply rounding (2 decimal places): $8.192 \rightarrow 8.19$
310+ 1 . Calculate exponent: $e = \lfloor \frac{\ln (1024)}{\ln(1000)} \rfloor = \lfloor 1.003 \rfloor = 1$
311+ 2 . Calculate value: $value = \frac{1024 \times 8}{1000} = 8.192$
312+ 3 . Apply rounding (2 decimal places): $8.192 \to 8.19$
3133134 . Result: "8.19 kbit"
314314
315315#### Bits Conversion with Binary Base (1024 bytes)
316316Given: bytes = 1024, bits = true, base = 2
317317
318- 1 . Calculate exponent: $e = \lfloor \log _ { 1024} (1024) \rfloor = 1$
319- 2 . Calculate value: $\text{ value} = \frac{1024 \cdot 8}{1024^1 } = 8$
318+ 1 . Calculate exponent: $e = \lfloor \frac{\ln( 1024)}{\ln (1024)} \rfloor = 1$
319+ 2 . Calculate value: $value = \frac{1024 \times 8}{1024} = 8$
3203203 . Result: "8 Kibit"
321321
322322## Data Flow
0 commit comments