Skip to content

Commit 7102c48

Browse files
committed
Updating documentation
1 parent ecf6b0c commit 7102c48

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed

docs/TECHNICAL_DOCUMENTATION.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -291,32 +291,32 @@ The algorithmic complexity of the conversion process is:
291291
Given: bytes = 1536, default settings (decimal, JEDEC standard)
292292

293293
1. Calculate exponent: $e = \lfloor \frac{\ln(1536)}{\ln(1000)} \rfloor = \lfloor 1.062 \rfloor = 1$
294-
2. Lookup divisor: $\text{DECIMAL\_POWERS}[1] = 1000$
295-
3. Calculate value: $\text{value} = \frac{1536}{1000} = 1.536$
296-
4. Apply rounding (2 decimal places): $1.536 \rightarrow 1.54$
294+
2. Lookup divisor: DECIMAL_POWERS[1] = 1000
295+
3. Calculate value: $value = \frac{1536}{1000} = 1.536$
296+
4. Apply rounding (2 decimal places): $1.536 \to 1.54$
297297
5. Result: "1.54 KB"
298298

299299
#### Binary Conversion (1536 bytes)
300300
Given: bytes = 1536, base = 2 (IEC standard)
301301

302302
1. Calculate exponent: $e = \lfloor \frac{\ln(1536)}{\ln(1024)} \rfloor = \lfloor 1.084 \rfloor = 1$
303-
2. Lookup divisor: $\text{BINARY\_POWERS}[1] = 1024$
304-
3. Calculate value: $\text{value} = \frac{1536}{1024} = 1.5$
303+
2. Lookup divisor: BINARY_POWERS[1] = 1024
304+
3. Calculate value: $value = \frac{1536}{1024} = 1.5$
305305
4. Result: "1.5 KiB"
306306

307307
#### Bits Conversion with Default Base (1024 bytes)
308308
Given: bytes = 1024, bits = true, default settings (base = 10)
309309

310-
1. Calculate exponent: $e = \lfloor \log_{1000}(1024) \rfloor = \lfloor 1.003 \rfloor = 1$
311-
2. Calculate value: $\text{value} = \frac{1024 \cdot 8}{1000^1} = 8.192$
312-
3. Apply rounding (2 decimal places): $8.192 \rightarrow 8.19$
310+
1. Calculate exponent: $e = \lfloor \frac{\ln(1024)}{\ln(1000)} \rfloor = \lfloor 1.003 \rfloor = 1$
311+
2. Calculate value: $value = \frac{1024 \times 8}{1000} = 8.192$
312+
3. Apply rounding (2 decimal places): $8.192 \to 8.19$
313313
4. Result: "8.19 kbit"
314314

315315
#### Bits Conversion with Binary Base (1024 bytes)
316316
Given: bytes = 1024, bits = true, base = 2
317317

318-
1. Calculate exponent: $e = \lfloor \log_{1024}(1024) \rfloor = 1$
319-
2. Calculate value: $\text{value} = \frac{1024 \cdot 8}{1024^1} = 8$
318+
1. Calculate exponent: $e = \lfloor \frac{\ln(1024)}{\ln(1024)} \rfloor = 1$
319+
2. Calculate value: $value = \frac{1024 \times 8}{1024} = 8$
320320
3. Result: "8 Kibit"
321321

322322
## Data Flow

0 commit comments

Comments
 (0)