+For statistical background and a more in-depth introduction to nested sampling, I recommend the [dynesty documentation](https://dynesty.readthedocs.io/en/latest/overview.html). In short, nested sampling is a technique for simultaneously estimating the Bayesian evidence and the posterior distribution (according to [Bayes' theorem](https://en.wikipedia.org/wiki/Bayes%27_theorem)) from nested iso-likelihood shells. These shells allow a quadrature estimate of the integral for the Bayesian evidence, which we can use for model selection, as well as the statistical weights for the underlying "live" points, which is where we get our posterior samples from!
0 commit comments