|
1 | 1 | <h1 align="center">Databend</h1> |
2 | | -<h2 align="center">ANY DATA. ANY SCALE. ONE DATABASE.</h2> |
3 | | -<h3 align="center">Blazing analytics, fast search, geo insights, vector AI — supercharged in a new-era Snowflake-compatible warehouse</h3> |
| 2 | +<h3 align="center">Unified Multimodal Database for Any Data at Any Scale.</h3> |
| 3 | +<p align="center">A <strong>next-generation</strong> cloud-native warehouse built in <strong>Rust</strong>. Open-source, Snowflake-compatible, and unifying BI, AI, Search, Geo, and Stream.</p> |
4 | 4 |
|
5 | 5 | <div align="center"> |
6 | 6 |
|
7 | 7 | <a href="https://databend.com/">☁️ Try Cloud</a> • |
8 | | -<a href="#quick-start">🚀 Quick Start</a> • |
9 | | -<a href="https://docs.databend.com/">📖 Documentation</a> |
| 8 | +<a href="#-quick-start">🚀 Quick Start</a> • |
| 9 | +<a href="https://docs.databend.com/">📖 Documentation</a> • |
| 10 | +<a href="https://link.databend.com/join-slack">💬 Slack</a> |
10 | 11 |
|
11 | 12 | <br><br> |
12 | 13 |
|
13 | | -<a href="https://link.databend.com/join-slack"> |
14 | | -<img src="https://img.shields.io/badge/slack-databend-0abd59?logo=slack" alt="slack" /> |
15 | | -</a> |
16 | 14 | <a href="https://github.com/databendlabs/databend/actions/workflows/release.yml"> |
17 | 15 | <img src="https://img.shields.io/github/actions/workflow/status/datafuselabs/databend/release.yml?branch=main" alt="CI Status" /> |
18 | 16 | </a> |
|
22 | 20 |
|
23 | 21 | <br> |
24 | 22 |
|
25 | | -<img src="https://github.com/user-attachments/assets/4c288d5c-9365-44f7-8cde-b2c7ebe15622" alt="databend" /> |
26 | | - |
27 | | -## Why Databend? |
28 | | - |
29 | | -Databend has expanded from analytics into a unified multimodal database: **one Snowflake-compatible SQL surface for BI, AI, search, and geospatial workloads.** |
30 | | - |
31 | | -**Unified Engine**: Analytics, vector, full-text, and geospatial share the same optimizer and elastic runtime. |
32 | | - |
33 | | -**Unified Data**: Structured, semi-structured, vector, and unstructured live directly on object stores with indexes, caching, transactions, MVCC branching. |
34 | | - |
35 | | -**Analytics Native**: ANSI SQL, windowing, incremental aggregates, and streaming ingestion deliver BI without moving data. |
36 | | - |
37 | | -**Vector Native**: Built-in embeddings, vector indexes, and semantic retrieval exposed through SQL and SDKs. |
38 | | - |
39 | | -**Search Native**: JSON full-text indexing, structured filters, and ranking to power hybrid search experiences. |
40 | | - |
41 | | -**Unified Deployment**: Cloud, self-hosted, or `pip install databend` all run the same engine on shared object storage. |
42 | | - |
43 | | -**Rust Performance**: Vectorized Rust execution with separated storage keeps performance high and compute spend lean. |
| 23 | +<img src="https://github.com/user-attachments/assets/4c288d5c-9365-44f7-8cde-b2c7ebe15622" alt="databend" width="100%" /> |
44 | 24 |
|
45 | | -**Enterprise Scale**: Fine-grained governance, masking, auditing, and production deployments exceeding 800+ PB and 100M+ daily queries. |
| 25 | +## 💡 Why Databend? |
46 | 26 |
|
47 | | -## Benchmarks |
| 27 | +Databend is an open-source **unified multimodal database** built in Rust. It empowers **Analytics**, **AI**, **Search**, and **Geo** workloads on a single platform directly from object storage. |
48 | 28 |
|
49 | | -**Performance**: [TPC-H vs Snowflake](https://docs.databend.com/guides/benchmark/tpch) | [ClickBench Results](https://www.databend.com/blog/category-product/clickbench-databend-top) |
50 | | -**Cost**: [90% Cost Reduction](https://docs.databend.com/guides/benchmark/data-ingest) |
| 29 | +- **Unified Engine**: One optimizer and runtime for all data types (Structured, Semi-structured, Vector). |
| 30 | +- **Native Pipelines**: Built-in **Stream** and **Task** for automated data cleaning and transformation. |
| 31 | +- **Cloud Native**: Stateless compute nodes over object storage (S3, GCS, Azure) with full ACID support. |
| 32 | +- **High Performance**: Vectorized execution and Zero-Copy processing. |
51 | 33 |
|
| 34 | +## ⚡ Quick Start |
52 | 35 |
|
53 | | - |
| 36 | +### 1. Cloud (Recommended) |
| 37 | +[Start for free on Databend Cloud](https://docs.databend.com/guides/cloud/) - Production-ready in 60 seconds. |
54 | 38 |
|
| 39 | +### 2. Local (Python) |
| 40 | +Ideal for development and testing: |
55 | 41 |
|
56 | | -## Use Cases |
57 | | - |
58 | | -- **SQL Analytics**: ANSI joins, window functions, incremental aggregates, and streaming ingestion for BI workloads. |
59 | | -- **AI Vector**: Persist embeddings alongside facts, index vectors, and run semantic retrieval for RAG and agent pipelines. |
60 | | -- **JSON Search**: Mix full-text search over JSON, metadata filters, and semantic similarity inside one query plan. |
61 | | -- **Geo Analytics**: Run distance, containment, and hex-grid analytics to power maps and mobility scenarios. |
62 | | -- **Lakehouse ETL**: Query Parquet, CSV, and NDJSON in object storage, transform streaming updates, and load them into managed tables. |
63 | | - |
64 | | -## Quick Start |
65 | | - |
66 | | -### Option 1: Databend Cloud Warehouse (Recommended) |
67 | | -[Start with Databend Cloud](https://docs.databend.com/guides/cloud/) - Serverless warehouse clusters, production-ready in 60 seconds |
68 | | - |
69 | | -### Option 2: Local Development with Python |
70 | 42 | ```bash |
71 | 43 | pip install databend |
72 | 44 | ``` |
73 | 45 |
|
74 | 46 | ```python |
75 | 47 | import databend |
76 | | - |
77 | 48 | ctx = databend.SessionContext() |
78 | | - |
79 | | -# Local table for quick testing |
80 | | -ctx.sql("CREATE TABLE products (id INT, name STRING, price FLOAT)").collect() |
81 | | -ctx.sql("INSERT INTO products VALUES (1, 'Laptop', 1299.99), (2, 'Phone', 899.50)").collect() |
82 | | -ctx.sql("SELECT * FROM products").show() |
83 | | - |
84 | | -# S3 remote table (same as cloud warehouse) |
85 | | -ctx.create_s3_connection("s3", "your_key", "your_secret") |
86 | | -ctx.sql("CREATE TABLE sales (id INT, revenue FLOAT) 's3://bucket/sales/' CONNECTION=(connection_name='s3')").collect() |
87 | | -ctx.sql("SELECT COUNT(*) FROM sales").show() |
| 49 | +ctx.sql("SELECT 'Hello, Databend!'").show() |
88 | 50 | ``` |
89 | 51 |
|
90 | | -### Option 3: Docker (Self-Host Experience) |
| 52 | +### 3. Docker |
| 53 | +Run the full warehouse locally: |
| 54 | + |
91 | 55 | ```bash |
92 | 56 | docker run -p 8000:8000 datafuselabs/databend |
93 | 57 | ``` |
94 | | -Experience the full warehouse capabilities locally - same features as cloud clusters. |
95 | 58 |
|
96 | | -## Community |
| 59 | +## 🚀 Use Cases |
| 60 | + |
| 61 | +- **BI & Analytics**: High-speed SQL on massive datasets. See [Query Processing](https://docs.databend.com/guides/query/query-processing). |
| 62 | +- **AI & Vectors**: Built-in vector search and embedding management. See [Vector Database](https://docs.databend.com/guides/query/vector-db). |
| 63 | +- **Full-Text Search**: Fast indexing and retrieval on text and semi-structured data (JSON). See [Full-Text Index](https://docs.databend.com/guides/query/full-text). |
| 64 | +- **Geospatial**: Advanced geo-analytics and mapping. See [Geospatial Analysis](https://docs.databend.com/guides/query/geospatial). |
| 65 | +- **Stream & Task**: Continuous data ingestion and transformation. See [Lakehouse ETL](https://docs.databend.com/guides/query/lakehouse-etl). |
| 66 | + |
| 67 | +## 🤝 Community & Support |
97 | 68 |
|
98 | | -- [📖 Documentation](https://docs.databend.com/) - Complete guides and references |
99 | | -- [💬 Slack](https://link.databend.com/join-slack) - Live community discussion |
100 | | -- [🐛 GitHub Issues](https://github.com/databendlabs/databend/issues) - Bug reports and feature requests |
101 | | -- [🎯 Good First Issues](https://link.databend.com/i-m-feeling-lucky) - Start contributing today |
| 69 | +- [📖 Documentation](https://docs.databend.com/) |
| 70 | +- [💬 Join Slack](https://link.databend.com/join-slack) |
| 71 | +- [🐛 Issue Tracker](https://github.com/databendlabs/databend/issues) |
| 72 | +- [🗺️ Roadmap](https://github.com/databendlabs/databend/issues/14167) |
102 | 73 |
|
103 | | -**Contributors get immortalized in `system.contributors` table! 🏆** |
| 74 | +**Contributors are immortalized in the `system.contributors` table! 🏆** |
104 | 75 |
|
105 | 76 | ## 📄 License |
106 | 77 |
|
107 | | -[Apache License 2.0](licenses/Apache-2.0.txt) + [Elastic License 2.0](licenses/Elastic.txt) |
108 | | -[Licensing FAQs](https://docs.databend.com/guides/products/dee/license) |
| 78 | +[Apache 2.0](licenses/Apache-2.0.txt) + [Elastic 2.0](licenses/Elastic.txt) | [Licensing FAQ](https://docs.databend.com/guides/products/dee/license) |
109 | 79 |
|
110 | 80 | --- |
111 | 81 |
|
112 | 82 | <div align="center"> |
113 | 83 | <strong>Built by engineers who redefine what's possible with data</strong><br> |
114 | 84 | <a href="https://databend.com">🌐 Website</a> • |
115 | | -<a href="https://x.com/DatabendLabs">🐦 Twitter</a> • |
116 | | -<a href="https://github.com/databendlabs/databend/issues/14167">🗺️ Roadmap</a> |
| 85 | +<a href="https://x.com/DatabendLabs">🐦 Twitter</a> |
117 | 86 | </div> |
0 commit comments