|
| 1 | +import numpy as np |
| 2 | +import torch |
| 3 | +from os.path import join as pjoin |
| 4 | +from .humanml.scripts.motion_process import (process_file, recover_from_ric) |
| 5 | +from . import BASEDataModule |
| 6 | +from .humanml import Text2MotionDatasetEval, Text2MotionDataset, Text2MotionDatasetCB, MotionDataset, MotionDatasetVQ, Text2MotionDatasetToken, Text2MotionDatasetM2T |
| 7 | +from .utils import humanml3d_collate |
| 8 | + |
| 9 | + |
| 10 | +class HumanML3DDataModule(BASEDataModule): |
| 11 | + def __init__(self, cfg, **kwargs): |
| 12 | + |
| 13 | + super().__init__(collate_fn=humanml3d_collate) |
| 14 | + self.cfg = cfg |
| 15 | + self.save_hyperparameters(logger=False) |
| 16 | + |
| 17 | + # Basic info of the dataset |
| 18 | + cfg.DATASET.JOINT_TYPE = 'humanml3d' |
| 19 | + self.name = "humanml3d" |
| 20 | + self.njoints = 22 |
| 21 | + |
| 22 | + # Path to the dataset |
| 23 | + data_root = cfg.DATASET.HUMANML3D.ROOT |
| 24 | + self.hparams.data_root = data_root |
| 25 | + self.hparams.text_dir = pjoin(data_root, "texts") |
| 26 | + self.hparams.motion_dir = pjoin(data_root, 'new_joint_vecs') |
| 27 | + |
| 28 | + # Mean and std of the dataset |
| 29 | + self.hparams.mean = np.load(pjoin('assets/meta', "mean.npy")) |
| 30 | + self.hparams.std = np.load(pjoin('assets/meta', "std.npy")) |
| 31 | + |
| 32 | + # Mean and std for fair evaluation |
| 33 | + self.hparams.mean_eval = np.load(pjoin('assets/meta', "mean_eval.npy")) |
| 34 | + self.hparams.std_eval = np.load(pjoin('assets/meta', "std_eval.npy")) |
| 35 | + |
| 36 | + # Length of the dataset |
| 37 | + self.hparams.max_motion_length = cfg.DATASET.HUMANML3D.MAX_MOTION_LEN |
| 38 | + self.hparams.min_motion_length = cfg.DATASET.HUMANML3D.MIN_MOTION_LEN |
| 39 | + self.hparams.max_text_len = cfg.DATASET.HUMANML3D.MAX_TEXT_LEN |
| 40 | + self.hparams.unit_length = cfg.DATASET.HUMANML3D.UNIT_LEN |
| 41 | + |
| 42 | + # Additional parameters |
| 43 | + self.hparams.debug = cfg.DEBUG |
| 44 | + self.hparams.stage = cfg.TRAIN.STAGE |
| 45 | + |
| 46 | + # Dataset switch |
| 47 | + self.DatasetEval = Text2MotionDatasetEval |
| 48 | + |
| 49 | + if cfg.TRAIN.STAGE == "vae": |
| 50 | + if cfg.model.params.motion_vae.target.split('.')[-1].lower() == "vqvae": |
| 51 | + self.hparams.win_size = 64 |
| 52 | + self.Dataset = MotionDatasetVQ |
| 53 | + else: |
| 54 | + self.Dataset = MotionDataset |
| 55 | + elif 'lm' in cfg.TRAIN.STAGE: |
| 56 | + self.hparams.code_path = cfg.DATASET.CODE_PATH |
| 57 | + self.hparams.task_path = cfg.DATASET.TASK_PATH |
| 58 | + self.hparams.std_text = cfg.DATASET.HUMANML3D.STD_TEXT |
| 59 | + self.Dataset = Text2MotionDatasetCB |
| 60 | + elif cfg.TRAIN.STAGE == "token": |
| 61 | + self.Dataset = Text2MotionDatasetToken |
| 62 | + self.DatasetEval = Text2MotionDatasetToken |
| 63 | + elif cfg.TRAIN.STAGE == "m2t": |
| 64 | + self.Dataset = Text2MotionDatasetM2T |
| 65 | + self.DatasetEval = Text2MotionDatasetM2T |
| 66 | + else: |
| 67 | + self.Dataset = Text2MotionDataset |
| 68 | + |
| 69 | + # Get additional info of the dataset |
| 70 | + self.nfeats = 263 |
| 71 | + cfg.DATASET.NFEATS = self.nfeats |
| 72 | + |
| 73 | + |
| 74 | + def feats2joints(self, features): |
| 75 | + mean = torch.tensor(self.hparams.mean).to(features) |
| 76 | + std = torch.tensor(self.hparams.std).to(features) |
| 77 | + features = features * std + mean |
| 78 | + return recover_from_ric(features, self.njoints) |
| 79 | + |
| 80 | + def joints2feats(self, features): |
| 81 | + features = process_file(features, self.njoints)[0] |
| 82 | + return features |
| 83 | + |
| 84 | + def normalize(self, features): |
| 85 | + mean = torch.tensor(self.hparams.mean).to(features) |
| 86 | + std = torch.tensor(self.hparams.std).to(features) |
| 87 | + features = (features - mean) / std |
| 88 | + return features |
| 89 | + |
| 90 | + def denormalize(self, features): |
| 91 | + mean = torch.tensor(self.hparams.mean).to(features) |
| 92 | + std = torch.tensor(self.hparams.std).to(features) |
| 93 | + features = features * std + mean |
| 94 | + return features |
| 95 | + |
| 96 | + def renorm4t2m(self, features): |
| 97 | + # renorm to t2m norms for using t2m evaluators |
| 98 | + ori_mean = torch.tensor(self.hparams.mean).to(features) |
| 99 | + ori_std = torch.tensor(self.hparams.std).to(features) |
| 100 | + eval_mean = torch.tensor(self.hparams.mean_eval).to(features) |
| 101 | + eval_std = torch.tensor(self.hparams.std_eval).to(features) |
| 102 | + features = features * ori_std + ori_mean |
| 103 | + features = (features - eval_mean) / eval_std |
| 104 | + return features |
| 105 | + |
| 106 | + def mm_mode(self, mm_on=True): |
| 107 | + if mm_on: |
| 108 | + self.is_mm = True |
| 109 | + self.name_list = self.test_dataset.name_list |
| 110 | + self.mm_list = np.random.choice(self.name_list, |
| 111 | + self.cfg.METRIC.MM_NUM_SAMPLES, |
| 112 | + replace=False) |
| 113 | + self.test_dataset.name_list = self.mm_list |
| 114 | + else: |
| 115 | + self.is_mm = False |
| 116 | + self.test_dataset.name_list = self.name_list |
0 commit comments