|
| 1 | +# Copyright 2025 Google LLC |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +from functools import cached_property |
| 16 | +import json |
| 17 | +import logging |
| 18 | +import re |
| 19 | +from typing import Any |
| 20 | +from typing import AsyncGenerator |
| 21 | + |
| 22 | +from google.adk.models.google_llm import Gemini |
| 23 | +from google.adk.models.llm_request import LlmRequest |
| 24 | +from google.adk.models.llm_response import LlmResponse |
| 25 | +from google.adk.utils.variant_utils import GoogleLLMVariant |
| 26 | +from google.genai import types |
| 27 | +from google.genai.types import Content |
| 28 | +from google.genai.types import FunctionDeclaration |
| 29 | +from google.genai.types import Part |
| 30 | +from pydantic import AliasChoices |
| 31 | +from pydantic import BaseModel |
| 32 | +from pydantic import Field |
| 33 | +from pydantic import ValidationError |
| 34 | +from typing_extensions import override |
| 35 | + |
| 36 | +logger = logging.getLogger('google_adk.' + __name__) |
| 37 | + |
| 38 | + |
| 39 | +class GemmaFunctionCallModel(BaseModel): |
| 40 | + """Flexible Pydantic model for parsing inline Gemma function call responses.""" |
| 41 | + |
| 42 | + name: str = Field(validation_alias=AliasChoices('name', 'function')) |
| 43 | + parameters: dict[str, Any] = Field( |
| 44 | + validation_alias=AliasChoices('parameters', 'args') |
| 45 | + ) |
| 46 | + |
| 47 | + |
| 48 | +class Gemma(Gemini): |
| 49 | + """Integration for Gemma models exposed via the Gemini API. |
| 50 | +
|
| 51 | + Only Gemma 3 models are supported at this time. For agentic use cases, |
| 52 | + use of gemma-3-27b-it and gemma-3-12b-it are strongly recommended. |
| 53 | +
|
| 54 | + For full documentation, see: https://ai.google.dev/gemma/docs/core/ |
| 55 | +
|
| 56 | + NOTE: Gemma does **NOT** support system instructions. Any system instructions |
| 57 | + will be replaced with an initial *user* prompt in the LLM request. If system |
| 58 | + instructions change over the course of agent execution, the initial content |
| 59 | + **SHOULD** be replaced. Special care is warranted here. |
| 60 | + See: https://ai.google.dev/gemma/docs/core/prompt-structure#system-instructions |
| 61 | +
|
| 62 | + NOTE: Gemma's function calling support is limited. It does not have full access to the |
| 63 | + same built-in tools as Gemini. It also does not have special API support for tools and |
| 64 | + functions. Rather, tools must be passed in via a `user` prompt, and extracted from model |
| 65 | + responses based on approximate shape. |
| 66 | +
|
| 67 | + NOTE: Vertex AI API support for Gemma is not currently included. This **ONLY** supports |
| 68 | + usage via the Gemini API. |
| 69 | + """ |
| 70 | + |
| 71 | + model: str = ( |
| 72 | + 'gemma-3-27b-it' # Others: [gemma-3-1b-it, gemma-3-4b-it, gemma-3-12b-it] |
| 73 | + ) |
| 74 | + |
| 75 | + @classmethod |
| 76 | + @override |
| 77 | + def supported_models(cls) -> list[str]: |
| 78 | + """Provides the list of supported models. |
| 79 | +
|
| 80 | + Returns: |
| 81 | + A list of supported models. |
| 82 | + """ |
| 83 | + |
| 84 | + return [ |
| 85 | + r'gemma-3.*', |
| 86 | + ] |
| 87 | + |
| 88 | + @cached_property |
| 89 | + def _api_backend(self) -> GoogleLLMVariant: |
| 90 | + return GoogleLLMVariant.GEMINI_API |
| 91 | + |
| 92 | + def _move_function_calls_into_system_instruction( |
| 93 | + self, llm_request: LlmRequest |
| 94 | + ): |
| 95 | + if llm_request.model is None or not llm_request.model.startswith('gemma-3'): |
| 96 | + return |
| 97 | + |
| 98 | + # Iterate through the existing contents to find and convert function calls and responses |
| 99 | + # from text parts, as Gemma models don't directly support function calling. |
| 100 | + new_contents: list[Content] = [] |
| 101 | + for content_item in llm_request.contents: |
| 102 | + ( |
| 103 | + new_parts_for_content, |
| 104 | + has_function_response_part, |
| 105 | + has_function_call_part, |
| 106 | + ) = _convert_content_parts_for_gemma(content_item) |
| 107 | + |
| 108 | + if has_function_response_part: |
| 109 | + if new_parts_for_content: |
| 110 | + new_contents.append(Content(role='user', parts=new_parts_for_content)) |
| 111 | + elif has_function_call_part: |
| 112 | + if new_parts_for_content: |
| 113 | + new_contents.append( |
| 114 | + Content(role='model', parts=new_parts_for_content) |
| 115 | + ) |
| 116 | + else: |
| 117 | + new_contents.append(content_item) |
| 118 | + |
| 119 | + llm_request.contents = new_contents |
| 120 | + |
| 121 | + if not llm_request.config.tools: |
| 122 | + return |
| 123 | + |
| 124 | + all_function_declarations: list[FunctionDeclaration] = [] |
| 125 | + for tool_item in llm_request.config.tools: |
| 126 | + if isinstance(tool_item, types.Tool) and tool_item.function_declarations: |
| 127 | + all_function_declarations.extend(tool_item.function_declarations) |
| 128 | + |
| 129 | + if all_function_declarations: |
| 130 | + system_instruction = _build_gemma_function_system_instruction( |
| 131 | + all_function_declarations |
| 132 | + ) |
| 133 | + llm_request.append_instructions([system_instruction]) |
| 134 | + |
| 135 | + llm_request.config.tools = [] |
| 136 | + |
| 137 | + def _extract_function_calls_from_response(self, llm_response: LlmResponse): |
| 138 | + if llm_response.partial or (llm_response.turn_complete is True): |
| 139 | + return |
| 140 | + |
| 141 | + if not llm_response.content: |
| 142 | + return |
| 143 | + |
| 144 | + if not llm_response.content.parts: |
| 145 | + return |
| 146 | + |
| 147 | + if len(llm_response.content.parts) > 1: |
| 148 | + return |
| 149 | + |
| 150 | + response_text = llm_response.content.parts[0].text |
| 151 | + if not response_text: |
| 152 | + return |
| 153 | + |
| 154 | + try: |
| 155 | + json_candidate = None |
| 156 | + |
| 157 | + markdown_code_block_pattern = re.compile( |
| 158 | + r'```(?:(json|tool_code))?\s*(.*?)\s*```', re.DOTALL |
| 159 | + ) |
| 160 | + block_match = markdown_code_block_pattern.search(response_text) |
| 161 | + |
| 162 | + if block_match: |
| 163 | + json_candidate = block_match.group(2).strip() |
| 164 | + else: |
| 165 | + found, json_text = _get_last_valid_json_substring(response_text) |
| 166 | + if found: |
| 167 | + json_candidate = json_text |
| 168 | + |
| 169 | + if not json_candidate: |
| 170 | + return |
| 171 | + |
| 172 | + function_call_parsed = GemmaFunctionCallModel.model_validate_json( |
| 173 | + json_candidate |
| 174 | + ) |
| 175 | + function_call = types.FunctionCall( |
| 176 | + name=function_call_parsed.name, |
| 177 | + args=function_call_parsed.parameters, |
| 178 | + ) |
| 179 | + function_call_part = Part(function_call=function_call) |
| 180 | + llm_response.content.parts = [function_call_part] |
| 181 | + except (json.JSONDecodeError, ValidationError) as e: |
| 182 | + logger.debug( |
| 183 | + f'Error attempting to parse JSON into function call. Leaving as text' |
| 184 | + f' response. %s', |
| 185 | + e, |
| 186 | + ) |
| 187 | + except Exception as e: |
| 188 | + logger.warning('Error processing Gemma function call response: %s', e) |
| 189 | + |
| 190 | + @override |
| 191 | + async def _preprocess_request(self, llm_request: LlmRequest) -> None: |
| 192 | + self._move_function_calls_into_system_instruction(llm_request=llm_request) |
| 193 | + |
| 194 | + if system_instruction := llm_request.config.system_instruction: |
| 195 | + contents = llm_request.contents |
| 196 | + instruction_content = Content( |
| 197 | + role='user', parts=[Part.from_text(text=system_instruction)] |
| 198 | + ) |
| 199 | + |
| 200 | + # NOTE: if history is preserved, we must include the system instructions ONLY once at the beginning |
| 201 | + # of any chain of contents. |
| 202 | + if contents: |
| 203 | + if contents[0] != instruction_content: |
| 204 | + # only prepend if it hasn't already been done |
| 205 | + llm_request.contents = [instruction_content] + contents |
| 206 | + |
| 207 | + llm_request.config.system_instruction = None |
| 208 | + |
| 209 | + return await super()._preprocess_request(llm_request) |
| 210 | + |
| 211 | + @override |
| 212 | + async def generate_content_async( |
| 213 | + self, llm_request: LlmRequest, stream: bool = False |
| 214 | + ) -> AsyncGenerator[LlmResponse, None]: |
| 215 | + """Sends a request to the Gemma model. |
| 216 | +
|
| 217 | + Args: |
| 218 | + llm_request: LlmRequest, the request to send to the Gemini model. |
| 219 | + stream: bool = False, whether to do streaming call. |
| 220 | +
|
| 221 | + Yields: |
| 222 | + LlmResponse: The model response. |
| 223 | + """ |
| 224 | + # print(f'{llm_request=}') |
| 225 | + assert llm_request.model.startswith('gemma-'), ( |
| 226 | + f'Requesting a non-Gemma model ({llm_request.model}) with the Gemma LLM' |
| 227 | + ' is not supported.' |
| 228 | + ) |
| 229 | + |
| 230 | + async for response in super().generate_content_async(llm_request, stream): |
| 231 | + self._extract_function_calls_from_response(response) |
| 232 | + yield response |
| 233 | + |
| 234 | + |
| 235 | +def _convert_content_parts_for_gemma( |
| 236 | + content_item: Content, |
| 237 | +) -> tuple[list[Part], bool, bool]: |
| 238 | + """Converts function call/response parts within a content item to text parts. |
| 239 | +
|
| 240 | + Args: |
| 241 | + content_item: The original Content item. |
| 242 | +
|
| 243 | + Returns: |
| 244 | + A tuple containing: |
| 245 | + - A list of new Part objects with function calls/responses converted to text. |
| 246 | + - A boolean indicating if any function response parts were found. |
| 247 | + - A boolean indicating if any function call parts were found. |
| 248 | + """ |
| 249 | + new_parts: list[Part] = [] |
| 250 | + has_function_response_part = False |
| 251 | + has_function_call_part = False |
| 252 | + |
| 253 | + for part in content_item.parts: |
| 254 | + if func_response := part.function_response: |
| 255 | + has_function_response_part = True |
| 256 | + response_text = ( |
| 257 | + f'Invoking tool `{func_response.name}` produced:' |
| 258 | + f' `{json.dumps(func_response.response)}`.' |
| 259 | + ) |
| 260 | + new_parts.append(Part.from_text(text=response_text)) |
| 261 | + elif func_call := part.function_call: |
| 262 | + has_function_call_part = True |
| 263 | + new_parts.append( |
| 264 | + Part.from_text(text=func_call.model_dump_json(exclude_none=True)) |
| 265 | + ) |
| 266 | + else: |
| 267 | + new_parts.append(part) |
| 268 | + return new_parts, has_function_response_part, has_function_call_part |
| 269 | + |
| 270 | + |
| 271 | +def _build_gemma_function_system_instruction( |
| 272 | + function_declarations: list[FunctionDeclaration], |
| 273 | +) -> str: |
| 274 | + """Constructs the system instruction string for Gemma function calling.""" |
| 275 | + if not function_declarations: |
| 276 | + return '' |
| 277 | + |
| 278 | + system_instruction_prefix = 'You have access to the following functions:\n[' |
| 279 | + instruction_parts = [] |
| 280 | + for func in function_declarations: |
| 281 | + instruction_parts.append(func.model_dump_json(exclude_none=True)) |
| 282 | + |
| 283 | + separator = ',\n' |
| 284 | + system_instruction = ( |
| 285 | + f'{system_instruction_prefix}{separator.join(instruction_parts)}\n]\n' |
| 286 | + ) |
| 287 | + |
| 288 | + system_instruction += ( |
| 289 | + 'When you call a function, you MUST respond in the format of: ' |
| 290 | + """{"name": function name, "parameters": dictionary of argument name and its value}\n""" |
| 291 | + 'When you call a function, you MUST NOT include any other text in the' |
| 292 | + ' response.\n' |
| 293 | + ) |
| 294 | + return system_instruction |
| 295 | + |
| 296 | + |
| 297 | +def _get_last_valid_json_substring(text: str) -> tuple[bool, str | None]: |
| 298 | + """Attempts to find and return the last valid JSON object in a string. |
| 299 | +
|
| 300 | + This function is designed to extract JSON that might be embedded in a larger |
| 301 | + text, potentially with introductory or concluding remarks. It will always chose |
| 302 | + the last block of valid json found within the supplied text (if it exists). |
| 303 | +
|
| 304 | + Args: |
| 305 | + text: The input string to search for JSON objects. |
| 306 | +
|
| 307 | + Returns: |
| 308 | + A tuple: |
| 309 | + - bool: True if a valid JSON substring was found, False otherwise. |
| 310 | + - str | None: The last valid JSON substring found, or None if none was |
| 311 | + found. |
| 312 | + """ |
| 313 | + decoder = json.JSONDecoder() |
| 314 | + last_json_str = None |
| 315 | + start_pos = 0 |
| 316 | + while start_pos < len(text): |
| 317 | + try: |
| 318 | + first_brace_index = text.index('{', start_pos) |
| 319 | + _, end_index = decoder.raw_decode(text[first_brace_index:]) |
| 320 | + last_json_str = text[first_brace_index : first_brace_index + end_index] |
| 321 | + start_pos = first_brace_index + end_index |
| 322 | + except json.JSONDecodeError: |
| 323 | + start_pos = first_brace_index + 1 |
| 324 | + except ValueError: |
| 325 | + break |
| 326 | + |
| 327 | + if last_json_str: |
| 328 | + return True, last_json_str |
| 329 | + return False, None |
0 commit comments