|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "cf1403ce", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Time Series Forecasting with BigFrames\n", |
| 9 | + "\n", |
| 10 | + "This notebook demonstrates time series forecasting using BigFrames with TimesFM and ARIMAPlus models on San Francisco bikeshare data." |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "code", |
| 15 | + "execution_count": null, |
| 16 | + "id": "c0b2db75", |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "import bigframes.pandas as bpd\n", |
| 21 | + "bpd.options.display.repr_mode = \"anywidget\"" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "code", |
| 26 | + "execution_count": null, |
| 27 | + "id": "83928f4d", |
| 28 | + "metadata": {}, |
| 29 | + "outputs": [], |
| 30 | + "source": [ |
| 31 | + "# Load bikeshare data, filtering for subscriber trips from 2018 onwards.\n", |
| 32 | + "df = bpd.read_gbq(\"bigquery-public-data.san_francisco_bikeshare.bikeshare_trips\")\n", |
| 33 | + "df = df[df[\"start_date\"] >= \"2018-01-01\"]\n", |
| 34 | + "df = df[df[\"subscriber_type\"] == \"Subscriber\"]\n", |
| 35 | + "\n", |
| 36 | + "# Aggregate trips by hour.\n", |
| 37 | + "df[\"trip_hour\"] = df[\"start_date\"] .dt.floor(\"h\")\n", |
| 38 | + "df_grouped = df[[\"trip_hour\", \"trip_id\"]].groupby(\"trip_hour\").count().reset_index()\n", |
| 39 | + "df_grouped = df_grouped.rename(columns={\"trip_id\": \"num_trips\"})" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "markdown", |
| 44 | + "id": "c43b7e65", |
| 45 | + "metadata": {}, |
| 46 | + "source": [ |
| 47 | + "## Forecasting with TimesFM\n", |
| 48 | + "\n", |
| 49 | + "Use TimesFM to forecast the number of bikeshare trips for the last week of the dataset." |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "code", |
| 54 | + "execution_count": null, |
| 55 | + "id": "1096e154", |
| 56 | + "metadata": {}, |
| 57 | + "outputs": [], |
| 58 | + "source": [ |
| 59 | + "# Forecast the last 168 hours (one week).\n", |
| 60 | + "result = df_grouped.head(2842-168).ai.forecast(\n", |
| 61 | + " timestamp_column=\"trip_hour\",\n", |
| 62 | + " data_column=\"num_trips\",\n", |
| 63 | + " horizon=168\n", |
| 64 | + ")\n", |
| 65 | + "result" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "cell_type": "markdown", |
| 70 | + "id": "90e80a82", |
| 71 | + "metadata": {}, |
| 72 | + "source": [ |
| 73 | + "## Forecasting with ARIMAPlus\n", |
| 74 | + "\n", |
| 75 | + "Forecast the same period using the ARIMAPlus model." |
| 76 | + ] |
| 77 | + }, |
| 78 | + { |
| 79 | + "cell_type": "code", |
| 80 | + "execution_count": null, |
| 81 | + "id": "f41e1cf0", |
| 82 | + "metadata": {}, |
| 83 | + "outputs": [], |
| 84 | + "source": [ |
| 85 | + "from bigframes.ml import forecasting\n", |
| 86 | + "\n", |
| 87 | + "# Create and configure an ARIMAPlus model for hourly data.\n", |
| 88 | + "model = forecasting.ARIMAPlus(\n", |
| 89 | + " auto_arima_max_order=5, # Reduce runtime for large datasets\n", |
| 90 | + " data_frequency=\"hourly\",\n", |
| 91 | + " horizon=168\n", |
| 92 | + ")\n", |
| 93 | + "\n", |
| 94 | + "# Use the same training data as the TimesFM model.\n", |
| 95 | + "X = df_grouped.head(2842-168)[[\"trip_hour\"]]\n", |
| 96 | + "y = df_grouped.head(2842-168)[[\"num_trips\"]]\n", |
| 97 | + "\n", |
| 98 | + "model.fit(X, y)\n", |
| 99 | + "predictions = model.predict(horizon=168, confidence_level=0.95)\n", |
| 100 | + "predictions\n" |
| 101 | + ] |
| 102 | + }, |
| 103 | + { |
| 104 | + "cell_type": "markdown", |
| 105 | + "id": "015804c3", |
| 106 | + "metadata": {}, |
| 107 | + "source": [ |
| 108 | + "## Multiple Time Series Forecasting\n", |
| 109 | + "\n", |
| 110 | + "Use ARIMAPlus to forecast multiple time series simultaneously. The `id_col` parameter differentiates each series." |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_type": "code", |
| 115 | + "execution_count": null, |
| 116 | + "id": "6dbe6c48", |
| 117 | + "metadata": {}, |
| 118 | + "outputs": [], |
| 119 | + "source": [ |
| 120 | + "# Filter for specific stations to create distinct time series.\n", |
| 121 | + "df_multi = bpd.read_gbq(\"bigquery-public-data.san_francisco_bikeshare.bikeshare_trips\")\n", |
| 122 | + "df_multi = df_multi[df_multi[\"start_station_name\"] .str.contains(\"Market|Powell|Embarcadero\")]\n", |
| 123 | + "\n", |
| 124 | + "# Group data by station and date.\n", |
| 125 | + "features = bpd.DataFrame({\n", |
| 126 | + " \"start_station_name\": df_multi[\"start_station_name\"],\n", |
| 127 | + " \"num_trips\": df_multi[\"start_date\"],\n", |
| 128 | + " \"date\": df_multi[\"start_date\"] .dt.date,\n", |
| 129 | + "})\n", |
| 130 | + "num_trips = features.groupby(\n", |
| 131 | + " [\"start_station_name\", \"date\"], as_index=False\n", |
| 132 | + " ).count()\n", |
| 133 | + "\n", |
| 134 | + "# Fit the model, identifying each series by 'start_station_name'.\n", |
| 135 | + "model.fit(\n", |
| 136 | + " num_trips[[\"date\"]],\n", |
| 137 | + " num_trips[[\"num_trips\"]],\n", |
| 138 | + " id_col=num_trips[[\"start_station_name\"]]\n", |
| 139 | + ")\n", |
| 140 | + "model" |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "markdown", |
| 145 | + "id": "4ed68c3c", |
| 146 | + "metadata": {}, |
| 147 | + "source": [ |
| 148 | + "## Visualize Forecasting Results\n", |
| 149 | + "\n", |
| 150 | + "Plot the TimesFM forecast results against the actual data to visually assess model performance." |
| 151 | + ] |
| 152 | + }, |
| 153 | + { |
| 154 | + "cell_type": "code", |
| 155 | + "execution_count": null, |
| 156 | + "id": "0e7a29e2", |
| 157 | + "metadata": {}, |
| 158 | + "outputs": [], |
| 159 | + "source": [ |
| 160 | + "# Prepare forecast data for plotting.\n", |
| 161 | + "result = result.sort_values(\"forecast_timestamp\")\n", |
| 162 | + "result = result[[\"forecast_timestamp\", \"forecast_value\"]]\n", |
| 163 | + "result = result.rename(columns={\n", |
| 164 | + " \"forecast_timestamp\": \"trip_hour\",\n", |
| 165 | + " \"forecast_value\": \"num_trips_forecast\"\n", |
| 166 | + "})\n", |
| 167 | + "\n", |
| 168 | + "# Combine actual and forecasted data for the last 4 weeks.\n", |
| 169 | + "df_all = bpd.concat([df_grouped, result])\n", |
| 170 | + "df_all = df_all.tail(672)\n", |
| 171 | + "\n", |
| 172 | + "# Plot actual vs. forecasted trips.\n", |
| 173 | + "df_all.plot.line()" |
| 174 | + ] |
| 175 | + } |
| 176 | + ], |
| 177 | + "metadata": { |
| 178 | + "kernelspec": { |
| 179 | + "display_name": "venv", |
| 180 | + "language": "python", |
| 181 | + "name": "python3" |
| 182 | + }, |
| 183 | + "language_info": { |
| 184 | + "codemirror_mode": { |
| 185 | + "name": "ipython", |
| 186 | + "version": 3 |
| 187 | + }, |
| 188 | + "file_extension": ".py", |
| 189 | + "mimetype": "text/x-python", |
| 190 | + "name": "python", |
| 191 | + "nbconvert_exporter": "python", |
| 192 | + "pygments_lexer": "ipython3", |
| 193 | + "version": "3.11.10" |
| 194 | + } |
| 195 | + }, |
| 196 | + "nbformat": 4, |
| 197 | + "nbformat_minor": 5 |
| 198 | +} |
0 commit comments