@@ -123,28 +123,55 @@ def astype(self, dtype):
123123
124124 Create a series of type ``Int64``:
125125
126- >>> ser = bpd.Series([1, 2 ], dtype='Int64')
126+ >>> ser = bpd.Series([2023010000246789, 1624123244123101, 1054834234120101 ], dtype='Int64')
127127 >>> ser
128- 0 1
129- 1 2
128+ 0 2023010000246789
129+ 1 1624123244123101
130+ 2 1054834234120101
130131 dtype: Int64
131132
132133 Convert to ``Float64`` type:
133134
134135 >>> ser.astype('Float64')
135- 0 1.0
136- 1 2.0
136+ 0 2023010000246789.0
137+ 1 1624123244123101.0
138+ 2 1054834234120101.0
137139 dtype: Float64
138140
141+ Convert to ``pd.ArrowDtype(pa.timestamp("us", tz="UTC"))`` type:
142+
143+ >>> ser.astype("timestamp[us, tz=UTC][pyarrow]")
144+ 0 2034-02-08 11:13:20.246789+00:00
145+ 1 2021-06-19 17:20:44.123101+00:00
146+ 2 2003-06-05 17:30:34.120101+00:00
147+ dtype: timestamp[us, tz=UTC][pyarrow]
148+
149+ Note that this is equivalent of using ``to_datetime`` with ``unit='us'``:
150+
151+ >>> bpd.to_datetime(ser, unit='us', utc=True)
152+ 0 2034-02-08 11:13:20.246789+00:00
153+ 1 2021-06-19 17:20:44.123101+00:00
154+ 2 2003-06-05 17:30:34.120101+00:00
155+ dtype: timestamp[us, tz=UTC][pyarrow]
156+
157+ Convert ``pd.ArrowDtype(pa.timestamp("us", tz="UTC"))`` type to ``Int64`` type:
158+
159+ >>> timestamp_ser = ser.astype("timestamp[us, tz=UTC][pyarrow]")
160+ >>> timestamp_ser.astype('Int64')
161+ 0 2023010000246789
162+ 1 1624123244123101
163+ 2 1054834234120101
164+ dtype: Int64
165+
139166 Args:
140167 dtype (str or pandas.ExtensionDtype):
141- A dtype supported by BigQuery DataFrame include 'boolean', 'Float64', 'Int64',
142- ' string', 'string[pyarrow]', 'timestamp[us, tz=UTC][pyarrow]',
143- 'timestamp[us] [pyarrow]', 'date32[day] [pyarrow]', 'time64[us] [pyarrow]'
144- A pandas.ExtensionDtype include pandas.BooleanDtype(), pandas.Float64Dtype(),
145- pandas.Int64Dtype(), pandas.StringDtype(storage="pyarrow"),
146- pd.ArrowDtype(pa.date32()), pd.ArrowDtype(pa.time64("us")),
147- pd.ArrowDtype(pa.timestamp("us")), pd.ArrowDtype(pa.timestamp("us", tz="UTC")).
168+ A dtype supported by BigQuery DataFrame include `` 'boolean'``, `` 'Float64'``, `` 'Int64'`` ,
169+ ``'int64[pyarrow]'``, ``' string'``, `` 'string[pyarrow]'``, `` 'timestamp[us, tz=UTC][pyarrow]'`` ,
170+ `` 'timestamp\ [us\]\ [pyarrow\]'``, `` 'date32\ [day\]\ [pyarrow\]'``, `` 'time64\ [us\]\ [pyarrow\]'``.
171+ A pandas.ExtensionDtype include `` pandas.BooleanDtype()``, `` pandas.Float64Dtype()`` ,
172+ `` pandas.Int64Dtype()``, `` pandas.StringDtype(storage="pyarrow")`` ,
173+ `` pd.ArrowDtype(pa.date32())``, `` pd.ArrowDtype(pa.time64("us"))`` ,
174+ `` pd.ArrowDtype(pa.timestamp("us"))``, `` pd.ArrowDtype(pa.timestamp("us", tz="UTC"))`` .
148175
149176 Returns:
150177 same type as caller
0 commit comments