|
196 | 196 | { |
197 | 197 | "data": { |
198 | 198 | "application/vnd.jupyter.widget-view+json": { |
199 | | - "model_id": "4efd723e5c3f447c937a1d1ea56bace5", |
| 199 | + "model_id": "34f2c113d9eb4eab81a888aca75f2e34", |
200 | 200 | "version_major": 2, |
201 | 201 | "version_minor": 1 |
202 | 202 | }, |
|
232 | 232 | " <td>AL</td>\n", |
233 | 233 | " <td>F</td>\n", |
234 | 234 | " <td>1910</td>\n", |
235 | | - " <td>Lillian</td>\n", |
236 | | - " <td>99</td>\n", |
| 235 | + " <td>Annie</td>\n", |
| 236 | + " <td>482</td>\n", |
237 | 237 | " </tr>\n", |
238 | 238 | " <tr>\n", |
239 | 239 | " <th>1</th>\n", |
240 | 240 | " <td>AL</td>\n", |
241 | 241 | " <td>F</td>\n", |
242 | 242 | " <td>1910</td>\n", |
243 | | - " <td>Ruby</td>\n", |
244 | | - " <td>204</td>\n", |
| 243 | + " <td>Myrtle</td>\n", |
| 244 | + " <td>104</td>\n", |
245 | 245 | " </tr>\n", |
246 | 246 | " <tr>\n", |
247 | 247 | " <th>2</th>\n", |
248 | | - " <td>AL</td>\n", |
| 248 | + " <td>AR</td>\n", |
249 | 249 | " <td>F</td>\n", |
250 | 250 | " <td>1910</td>\n", |
251 | | - " <td>Helen</td>\n", |
252 | | - " <td>76</td>\n", |
| 251 | + " <td>Lillian</td>\n", |
| 252 | + " <td>56</td>\n", |
253 | 253 | " </tr>\n", |
254 | 254 | " <tr>\n", |
255 | 255 | " <th>3</th>\n", |
256 | | - " <td>AL</td>\n", |
| 256 | + " <td>CT</td>\n", |
257 | 257 | " <td>F</td>\n", |
258 | 258 | " <td>1910</td>\n", |
259 | | - " <td>Eunice</td>\n", |
260 | | - " <td>41</td>\n", |
| 259 | + " <td>Anne</td>\n", |
| 260 | + " <td>38</td>\n", |
261 | 261 | " </tr>\n", |
262 | 262 | " <tr>\n", |
263 | 263 | " <th>4</th>\n", |
264 | | - " <td>AR</td>\n", |
| 264 | + " <td>CT</td>\n", |
265 | 265 | " <td>F</td>\n", |
266 | 266 | " <td>1910</td>\n", |
267 | | - " <td>Dora</td>\n", |
268 | | - " <td>42</td>\n", |
| 267 | + " <td>Frances</td>\n", |
| 268 | + " <td>45</td>\n", |
269 | 269 | " </tr>\n", |
270 | 270 | " <tr>\n", |
271 | 271 | " <th>5</th>\n", |
272 | | - " <td>CA</td>\n", |
| 272 | + " <td>FL</td>\n", |
273 | 273 | " <td>F</td>\n", |
274 | 274 | " <td>1910</td>\n", |
275 | | - " <td>Edna</td>\n", |
276 | | - " <td>62</td>\n", |
| 275 | + " <td>Margaret</td>\n", |
| 276 | + " <td>53</td>\n", |
277 | 277 | " </tr>\n", |
278 | 278 | " <tr>\n", |
279 | 279 | " <th>6</th>\n", |
280 | | - " <td>CA</td>\n", |
| 280 | + " <td>GA</td>\n", |
281 | 281 | " <td>F</td>\n", |
282 | 282 | " <td>1910</td>\n", |
283 | | - " <td>Helen</td>\n", |
284 | | - " <td>239</td>\n", |
| 283 | + " <td>Mae</td>\n", |
| 284 | + " <td>73</td>\n", |
285 | 285 | " </tr>\n", |
286 | 286 | " <tr>\n", |
287 | 287 | " <th>7</th>\n", |
288 | | - " <td>CO</td>\n", |
| 288 | + " <td>GA</td>\n", |
289 | 289 | " <td>F</td>\n", |
290 | 290 | " <td>1910</td>\n", |
291 | | - " <td>Alice</td>\n", |
292 | | - " <td>46</td>\n", |
| 291 | + " <td>Beatrice</td>\n", |
| 292 | + " <td>96</td>\n", |
293 | 293 | " </tr>\n", |
294 | 294 | " <tr>\n", |
295 | 295 | " <th>8</th>\n", |
296 | | - " <td>FL</td>\n", |
| 296 | + " <td>GA</td>\n", |
297 | 297 | " <td>F</td>\n", |
298 | 298 | " <td>1910</td>\n", |
299 | | - " <td>Willie</td>\n", |
300 | | - " <td>71</td>\n", |
| 299 | + " <td>Lola</td>\n", |
| 300 | + " <td>47</td>\n", |
301 | 301 | " </tr>\n", |
302 | 302 | " <tr>\n", |
303 | 303 | " <th>9</th>\n", |
304 | | - " <td>FL</td>\n", |
| 304 | + " <td>IA</td>\n", |
305 | 305 | " <td>F</td>\n", |
306 | 306 | " <td>1910</td>\n", |
307 | | - " <td>Thelma</td>\n", |
308 | | - " <td>65</td>\n", |
| 307 | + " <td>Viola</td>\n", |
| 308 | + " <td>49</td>\n", |
309 | 309 | " </tr>\n", |
310 | 310 | " </tbody>\n", |
311 | 311 | "</table>\n", |
312 | 312 | "<p>10 rows × 5 columns</p>\n", |
313 | 313 | "</div>[5552452 rows x 5 columns in total]" |
314 | 314 | ], |
315 | 315 | "text/plain": [ |
316 | | - "state gender year name number\n", |
317 | | - " AL F 1910 Lillian 99\n", |
318 | | - " AL F 1910 Ruby 204\n", |
319 | | - " AL F 1910 Helen 76\n", |
320 | | - " AL F 1910 Eunice 41\n", |
321 | | - " AR F 1910 Dora 42\n", |
322 | | - " CA F 1910 Edna 62\n", |
323 | | - " CA F 1910 Helen 239\n", |
324 | | - " CO F 1910 Alice 46\n", |
325 | | - " FL F 1910 Willie 71\n", |
326 | | - " FL F 1910 Thelma 65\n", |
| 316 | + "state gender year name number\n", |
| 317 | + " AL F 1910 Annie 482\n", |
| 318 | + " AL F 1910 Myrtle 104\n", |
| 319 | + " AR F 1910 Lillian 56\n", |
| 320 | + " CT F 1910 Anne 38\n", |
| 321 | + " CT F 1910 Frances 45\n", |
| 322 | + " FL F 1910 Margaret 53\n", |
| 323 | + " GA F 1910 Mae 73\n", |
| 324 | + " GA F 1910 Beatrice 96\n", |
| 325 | + " GA F 1910 Lola 47\n", |
| 326 | + " IA F 1910 Viola 49\n", |
327 | 327 | "...\n", |
328 | 328 | "\n", |
329 | 329 | "[5552452 rows x 5 columns]" |
|
409 | 409 | { |
410 | 410 | "data": { |
411 | 411 | "application/vnd.jupyter.widget-view+json": { |
412 | | - "model_id": "dec7fc1edb5a44bc8f3f6307d608e83f", |
| 412 | + "model_id": "e98f5810f44446ecb3e89169f43f478c", |
413 | 413 | "version_major": 2, |
414 | 414 | "version_minor": 1 |
415 | 415 | }, |
416 | 416 | "text/plain": [ |
417 | | - "<bigframes.display.anywidget.TableWidget object at 0x7f092c143890>" |
| 417 | + "<bigframes.display.anywidget.TableWidget object at 0x7fe178e53890>" |
418 | 418 | ] |
419 | 419 | }, |
420 | 420 | "execution_count": 7, |
|
523 | 523 | { |
524 | 524 | "data": { |
525 | 525 | "application/vnd.jupyter.widget-view+json": { |
526 | | - "model_id": "2f15f43fbb7143ee9300dcffb19c8d02", |
| 526 | + "model_id": "4d572004a3d746bbb74f75d8e6836e2d", |
527 | 527 | "version_major": 2, |
528 | 528 | "version_minor": 1 |
529 | 529 | }, |
530 | 530 | "text/plain": [ |
531 | | - "<bigframes.display.anywidget.TableWidget object at 0x7f092063c690>" |
| 531 | + "<bigframes.display.anywidget.TableWidget object at 0x7fe178468690>" |
532 | 532 | ] |
533 | 533 | }, |
534 | 534 | "execution_count": 9, |
|
563 | 563 | "data": { |
564 | 564 | "text/html": [ |
565 | 565 | "✅ Completed. \n", |
566 | | - " Query processed 85.9 kB in 19 seconds of slot time.\n", |
| 566 | + " Query processed 85.9 kB in 22 seconds of slot time.\n", |
567 | 567 | " " |
568 | 568 | ], |
569 | 569 | "text/plain": [ |
|
624 | 624 | { |
625 | 625 | "data": { |
626 | 626 | "application/vnd.jupyter.widget-view+json": { |
627 | | - "model_id": "c90f45283f394a35a1d11ddc04e7e4b1", |
| 627 | + "model_id": "b6f9e48397d74cde994cec728e9f9ea8", |
628 | 628 | "version_major": 2, |
629 | 629 | "version_minor": 1 |
630 | 630 | }, |
|
726 | 726 | " <td>EU</td>\n", |
727 | 727 | " <td>DE</td>\n", |
728 | 728 | " <td>03.10.2018</td>\n", |
729 | | - " <td>A01K 31/00</td>\n", |
730 | | - " <td><NA></td>\n", |
731 | | - " <td>18171005.4</td>\n", |
732 | | - " <td>05.02.2015</td>\n", |
733 | | - " <td>05.02.2014</td>\n", |
734 | | - " <td>Stork Bamberger Patentanw√§lte</td>\n", |
735 | | - " <td>Linco Food Systems A/S</td>\n", |
736 | | - " <td>Thrane, Uffe</td>\n", |
737 | | - " <td>MASTHÄHNCHENCONTAINER ALS BESTANDTEIL EINER E...</td>\n", |
738 | | - " <td>EP 3 381 276 A1</td>\n", |
739 | | - " </tr>\n", |
740 | | - " <tr>\n", |
741 | | - " <th>4</th>\n", |
742 | | - " <td>{'application_number': None, 'class_internatio...</td>\n", |
743 | | - " <td>gs://gcs-public-data--labeled-patents/espacene...</td>\n", |
744 | | - " <td>EU</td>\n", |
745 | | - " <td>DE</td>\n", |
746 | | - " <td>03.10.2018</td>\n", |
747 | 729 | " <td>G06F 11/30</td>\n", |
748 | 730 | " <td><NA></td>\n", |
749 | 731 | " <td>18157347.8</td>\n", |
|
755 | 737 | " <td>METHOD EXECUTED BY A COMPUTER, INFORMATION PRO...</td>\n", |
756 | 738 | " <td>EP 3 382 553 A1</td>\n", |
757 | 739 | " </tr>\n", |
| 740 | + " <tr>\n", |
| 741 | + " <th>4</th>\n", |
| 742 | + " <td>{'application_number': None, 'class_internatio...</td>\n", |
| 743 | + " <td>gs://gcs-public-data--labeled-patents/espacene...</td>\n", |
| 744 | + " <td>EU</td>\n", |
| 745 | + " <td>DE</td>\n", |
| 746 | + " <td>03.10.2018</td>\n", |
| 747 | + " <td>A01K 31/00</td>\n", |
| 748 | + " <td><NA></td>\n", |
| 749 | + " <td>18171005.4</td>\n", |
| 750 | + " <td>05.02.2015</td>\n", |
| 751 | + " <td>05.02.2014</td>\n", |
| 752 | + " <td>Stork Bamberger Patentanw√§lte</td>\n", |
| 753 | + " <td>Linco Food Systems A/S</td>\n", |
| 754 | + " <td>Thrane, Uffe</td>\n", |
| 755 | + " <td>MASTHÄHNCHENCONTAINER ALS BESTANDTEIL EINER E...</td>\n", |
| 756 | + " <td>EP 3 381 276 A1</td>\n", |
| 757 | + " </tr>\n", |
758 | 758 | " </tbody>\n", |
759 | 759 | "</table>\n", |
760 | 760 | "<p>5 rows × 15 columns</p>\n", |
|
779 | 779 | "0 29.08.018 E04H 6/12 <NA> 18157874.1 \n", |
780 | 780 | "1 03.10.2018 H05B 6/12 <NA> 18165514.3 \n", |
781 | 781 | "2 03.10.2018 H01L 21/20 <NA> 18166536.5 \n", |
782 | | - "3 03.10.2018 A01K 31/00 <NA> 18171005.4 \n", |
783 | | - "4 03.10.2018 G06F 11/30 <NA> 18157347.8 \n", |
| 782 | + "3 03.10.2018 G06F 11/30 <NA> 18157347.8 \n", |
| 783 | + "4 03.10.2018 A01K 31/00 <NA> 18171005.4 \n", |
784 | 784 | "\n", |
785 | 785 | " filing_date priority_date_eu representative_line_1_eu \\\n", |
786 | 786 | "0 21.02.2018 22.02.2017 Liedtke & Partner Patentanw√§lte \n", |
787 | 787 | "1 03.04.2018 30.03.2017 <NA> \n", |
788 | 788 | "2 16.02.2016 <NA> Scheider, Sascha et al \n", |
789 | | - "3 05.02.2015 05.02.2014 Stork Bamberger Patentanw√§lte \n", |
790 | | - "4 19.02.2018 31.03.2017 Hoffmann Eitle \n", |
| 789 | + "3 19.02.2018 31.03.2017 Hoffmann Eitle \n", |
| 790 | + "4 05.02.2015 05.02.2014 Stork Bamberger Patentanw√§lte \n", |
791 | 791 | "\n", |
792 | 792 | " applicant_line_1 inventor_line_1 \\\n", |
793 | 793 | "0 SHB Hebezeugbau GmbH VOLGER, Alexander \n", |
794 | 794 | "1 BSH Hausger√§te GmbH Acero Acero, Jesus \n", |
795 | 795 | "2 EV Group E. Thallner GmbH Kurz, Florian \n", |
796 | | - "3 Linco Food Systems A/S Thrane, Uffe \n", |
797 | | - "4 FUJITSU LIMITED Kukihara, Kensuke \n", |
| 796 | + "3 FUJITSU LIMITED Kukihara, Kensuke \n", |
| 797 | + "4 Linco Food Systems A/S Thrane, Uffe \n", |
798 | 798 | "\n", |
799 | 799 | " title_line_1 number \n", |
800 | 800 | "0 STEUERUNGSSYSTEM FÜR AUTOMATISCHE PARKHÄUSER EP 3 366 869 A1 \n", |
801 | 801 | "1 VORRICHTUNG ZUR INDUKTIVEN ENERGIE√úBERTRAGUNG EP 3 383 141 A2 \n", |
802 | 802 | "2 VORRICHTUNG ZUM BONDEN VON SUBSTRATEN EP 3 382 744 A1 \n", |
803 | | - "3 MASTHÄHNCHENCONTAINER ALS BESTANDTEIL EINER E... EP 3 381 276 A1 \n", |
804 | | - "4 METHOD EXECUTED BY A COMPUTER, INFORMATION PRO... EP 3 382 553 A1 \n", |
| 803 | + "3 METHOD EXECUTED BY A COMPUTER, INFORMATION PRO... EP 3 382 553 A1 \n", |
| 804 | + "4 MASTHÄHNCHENCONTAINER ALS BESTANDTEIL EINER E... EP 3 381 276 A1 \n", |
805 | 805 | "\n", |
806 | 806 | "[5 rows x 15 columns]" |
807 | 807 | ] |
|
824 | 824 | "\"\"\")" |
825 | 825 | ] |
826 | 826 | }, |
| 827 | + { |
| 828 | + "cell_type": "markdown", |
| 829 | + "id": "e89b4784", |
| 830 | + "metadata": {}, |
| 831 | + "source": [ |
| 832 | + "### Displaying Nested Data (STRUCTs and ARRAYs)\n", |
| 833 | + "BigQuery DataFrames automatically flattens nested STRUCT and ARRAY columns into separate, more manageable columns when displayed in `anywidget` mode. This approach simplifies interaction and readability, as it avoids deeply nested or collapsible elements.\n", |
| 834 | + "\n", |
| 835 | + "This flattening ensures that all data is directly visible and sortable, enhancing the interactive table experience.\n" |
| 836 | + ] |
| 837 | + }, |
827 | 838 | { |
828 | 839 | "cell_type": "code", |
829 | 840 | "execution_count": 11, |
|
871 | 882 | { |
872 | 883 | "data": { |
873 | 884 | "application/vnd.jupyter.widget-view+json": { |
874 | | - "model_id": "459bf0e580a643b99eb7a0348e8aabab", |
| 885 | + "model_id": "e40b659f05504b6a95c920eda98256cc", |
875 | 886 | "version_major": 2, |
876 | 887 | "version_minor": 1 |
877 | 888 | }, |
|
0 commit comments