@@ -39,12 +39,12 @@ def test_xgbregressor_model_score(
3939 result = penguins_xgbregressor_model .score (X_test , y_test ).to_pandas ()
4040 expected = pandas .DataFrame (
4141 {
42- "mean_absolute_error" : [115.57598 ],
43- "mean_squared_error" : [23455.52121 ],
44- "mean_squared_log_error" : [0.00147 ],
45- "median_absolute_error" : [88.01318 ],
46- "r2_score" : [0.96368 ],
47- "explained_variance" : [0.96384 ],
42+ "mean_absolute_error" : [108.77582 ],
43+ "mean_squared_error" : [20943.272738 ],
44+ "mean_squared_log_error" : [0.00135 ],
45+ "median_absolute_error" : [86.313477 ],
46+ "r2_score" : [0.967571 ],
47+ "explained_variance" : [0.967609 ],
4848 },
4949 dtype = "Float64" ,
5050 )
@@ -76,12 +76,12 @@ def test_xgbregressor_model_score_series(
7676 result = penguins_xgbregressor_model .score (X_test , y_test ).to_pandas ()
7777 expected = pandas .DataFrame (
7878 {
79- "mean_absolute_error" : [115.57598 ],
80- "mean_squared_error" : [23455.52121 ],
81- "mean_squared_log_error" : [0.00147 ],
82- "median_absolute_error" : [88.01318 ],
83- "r2_score" : [0.96368 ],
84- "explained_variance" : [0.96384 ],
79+ "mean_absolute_error" : [108.77582 ],
80+ "mean_squared_error" : [20943.272738 ],
81+ "mean_squared_log_error" : [0.00135 ],
82+ "median_absolute_error" : [86.313477 ],
83+ "r2_score" : [0.967571 ],
84+ "explained_variance" : [0.967609 ],
8585 },
8686 dtype = "Float64" ,
8787 )
@@ -136,12 +136,12 @@ def test_to_gbq_saved_xgbregressor_model_scores(
136136 result = saved_model .score (X_test , y_test ).to_pandas ()
137137 expected = pandas .DataFrame (
138138 {
139- "mean_absolute_error" : [115.57598 ],
140- "mean_squared_error" : [23455.52121 ],
141- "mean_squared_log_error" : [0.00147 ],
142- "median_absolute_error" : [88.01318 ],
143- "r2_score" : [0.96368 ],
144- "explained_variance" : [0.96384 ],
139+ "mean_absolute_error" : [109.016973 ],
140+ "mean_squared_error" : [20867.299758 ],
141+ "mean_squared_log_error" : [0.00135 ],
142+ "median_absolute_error" : [86.490234 ],
143+ "r2_score" : [0.967458 ],
144+ "explained_variance" : [0.967504 ],
145145 },
146146 dtype = "Float64" ,
147147 )
@@ -260,11 +260,11 @@ def test_to_gbq_saved_xgbclassifier_model_scores(
260260 result = saved_model .score (X_test , y_test ).to_pandas ()
261261 expected = pandas .DataFrame (
262262 {
263- "precision" : [0.662674 ],
264- "recall" : [0.664646 ],
265- "accuracy" : [0.994012 ],
266- "f1_score" : [0.663657 ],
267- "log_loss" : [0.374438 ],
263+ "precision" : [1.0 ],
264+ "recall" : [1.0 ],
265+ "accuracy" : [1.0 ],
266+ "f1_score" : [1.0 ],
267+ "log_loss" : [0.331442 ],
268268 "roc_auc" : [1.0 ],
269269 },
270270 dtype = "Float64" ,
0 commit comments