3131_BQML_PARAMS_MAPPING = {
3232 "booster" : "boosterType" ,
3333 "tree_method" : "treeMethod" ,
34- "early_stop" : "earlyStop" ,
3534 "colsample_bytree" : "colsampleBylevel" ,
3635 "colsample_bylevel" : "colsampleBytree" ,
3736 "colsample_bynode" : "colsampleBynode" ,
4039 "reg_alpha" : "l1Regularization" ,
4140 "reg_lambda" : "l2Regularization" ,
4241 "learning_rate" : "learnRate" ,
43- "min_rel_progress " : "minRelativeProgress" ,
44- "num_parallel_tree " : "numParallelTree" ,
42+ "tol " : "minRelativeProgress" ,
43+ "n_estimators " : "numParallelTree" ,
4544 "min_tree_child_weight" : "minTreeChildWeight" ,
4645 "max_depth" : "maxTreeDepth" ,
4746 "max_iterations" : "maxIterations" ,
@@ -57,7 +56,7 @@ class XGBRegressor(
5756
5857 def __init__ (
5958 self ,
60- num_parallel_tree : int = 1 ,
59+ n_estimators : int = 1 ,
6160 * ,
6261 booster : Literal ["gbtree" , "dart" ] = "gbtree" ,
6362 dart_normalized_type : Literal ["tree" , "forest" ] = "tree" ,
@@ -71,14 +70,13 @@ def __init__(
7170 subsample : float = 1.0 ,
7271 reg_alpha : float = 0.0 ,
7372 reg_lambda : float = 1.0 ,
74- early_stop : float = True ,
7573 learning_rate : float = 0.3 ,
7674 max_iterations : int = 20 ,
77- min_rel_progress : float = 0.01 ,
75+ tol : float = 0.01 ,
7876 enable_global_explain : bool = False ,
7977 xgboost_version : Literal ["0.9" , "1.1" ] = "0.9" ,
8078 ):
81- self .num_parallel_tree = num_parallel_tree
79+ self .n_estimators = n_estimators
8280 self .booster = booster
8381 self .dart_normalized_type = dart_normalized_type
8482 self .tree_method = tree_method
@@ -91,10 +89,9 @@ def __init__(
9189 self .subsample = subsample
9290 self .reg_alpha = reg_alpha
9391 self .reg_lambda = reg_lambda
94- self .early_stop = early_stop
9592 self .learning_rate = learning_rate
9693 self .max_iterations = max_iterations
97- self .min_rel_progress = min_rel_progress
94+ self .tol = tol
9895 self .enable_global_explain = enable_global_explain
9996 self .xgboost_version = xgboost_version
10097 self ._bqml_model : Optional [core .BqmlModel ] = None
@@ -127,7 +124,8 @@ def _bqml_options(self) -> Dict[str, str | int | bool | float | List[str]]:
127124 return {
128125 "model_type" : "BOOSTED_TREE_REGRESSOR" ,
129126 "data_split_method" : "NO_SPLIT" ,
130- "num_parallel_tree" : self .num_parallel_tree ,
127+ "early_stop" : True ,
128+ "num_parallel_tree" : self .n_estimators ,
131129 "booster_type" : self .booster ,
132130 "tree_method" : self .tree_method ,
133131 "min_tree_child_weight" : self .min_tree_child_weight ,
@@ -139,10 +137,9 @@ def _bqml_options(self) -> Dict[str, str | int | bool | float | List[str]]:
139137 "subsample" : self .subsample ,
140138 "l1_reg" : self .reg_alpha ,
141139 "l2_reg" : self .reg_lambda ,
142- "early_stop" : self .early_stop ,
143140 "learn_rate" : self .learning_rate ,
144141 "max_iterations" : self .max_iterations ,
145- "min_rel_progress" : self .min_rel_progress ,
142+ "min_rel_progress" : self .tol ,
146143 "enable_global_explain" : self .enable_global_explain ,
147144 "xgboost_version" : self .xgboost_version ,
148145 }
@@ -215,7 +212,7 @@ class XGBClassifier(
215212
216213 def __init__ (
217214 self ,
218- num_parallel_tree : int = 1 ,
215+ n_estimators : int = 1 ,
219216 * ,
220217 booster : Literal ["gbtree" , "dart" ] = "gbtree" ,
221218 dart_normalized_type : Literal ["tree" , "forest" ] = "tree" ,
@@ -229,14 +226,13 @@ def __init__(
229226 subsample : float = 1.0 ,
230227 reg_alpha : float = 0.0 ,
231228 reg_lambda : float = 1.0 ,
232- early_stop : bool = True ,
233229 learning_rate : float = 0.3 ,
234230 max_iterations : int = 20 ,
235- min_rel_progress : float = 0.01 ,
231+ tol : float = 0.01 ,
236232 enable_global_explain : bool = False ,
237233 xgboost_version : Literal ["0.9" , "1.1" ] = "0.9" ,
238234 ):
239- self .num_parallel_tree = num_parallel_tree
235+ self .n_estimators = n_estimators
240236 self .booster = booster
241237 self .dart_normalized_type = dart_normalized_type
242238 self .tree_method = tree_method
@@ -249,10 +245,9 @@ def __init__(
249245 self .subsample = subsample
250246 self .reg_alpha = reg_alpha
251247 self .reg_lambda = reg_lambda
252- self .early_stop = early_stop
253248 self .learning_rate = learning_rate
254249 self .max_iterations = max_iterations
255- self .min_rel_progress = min_rel_progress
250+ self .tol = tol
256251 self .enable_global_explain = enable_global_explain
257252 self .xgboost_version = xgboost_version
258253 self ._bqml_model : Optional [core .BqmlModel ] = None
@@ -285,7 +280,8 @@ def _bqml_options(self) -> Dict[str, str | int | bool | float | List[str]]:
285280 return {
286281 "model_type" : "BOOSTED_TREE_CLASSIFIER" ,
287282 "data_split_method" : "NO_SPLIT" ,
288- "num_parallel_tree" : self .num_parallel_tree ,
283+ "early_stop" : True ,
284+ "num_parallel_tree" : self .n_estimators ,
289285 "booster_type" : self .booster ,
290286 "tree_method" : self .tree_method ,
291287 "min_tree_child_weight" : self .min_tree_child_weight ,
@@ -297,10 +293,9 @@ def _bqml_options(self) -> Dict[str, str | int | bool | float | List[str]]:
297293 "subsample" : self .subsample ,
298294 "l1_reg" : self .reg_alpha ,
299295 "l2_reg" : self .reg_lambda ,
300- "early_stop" : self .early_stop ,
301296 "learn_rate" : self .learning_rate ,
302297 "max_iterations" : self .max_iterations ,
303- "min_rel_progress" : self .min_rel_progress ,
298+ "min_rel_progress" : self .tol ,
304299 "enable_global_explain" : self .enable_global_explain ,
305300 "xgboost_version" : self .xgboost_version ,
306301 }
@@ -371,7 +366,7 @@ class RandomForestRegressor(
371366
372367 def __init__ (
373368 self ,
374- num_parallel_tree : int = 100 ,
369+ n_estimators : int = 100 ,
375370 * ,
376371 tree_method : Literal ["auto" , "exact" , "approx" , "hist" ] = "auto" ,
377372 min_tree_child_weight : int = 1 ,
@@ -383,12 +378,11 @@ def __init__(
383378 subsample = 0.8 ,
384379 reg_alpha = 0.0 ,
385380 reg_lambda = 1.0 ,
386- early_stop = True ,
387- min_rel_progress = 0.01 ,
381+ tol = 0.01 ,
388382 enable_global_explain = False ,
389383 xgboost_version : Literal ["0.9" , "1.1" ] = "0.9" ,
390384 ):
391- self .num_parallel_tree = num_parallel_tree
385+ self .n_estimators = n_estimators
392386 self .tree_method = tree_method
393387 self .min_tree_child_weight = min_tree_child_weight
394388 self .colsample_bytree = colsample_bytree
@@ -399,8 +393,7 @@ def __init__(
399393 self .subsample = subsample
400394 self .reg_alpha = reg_alpha
401395 self .reg_lambda = reg_lambda
402- self .early_stop = early_stop
403- self .min_rel_progress = min_rel_progress
396+ self .tol = tol
404397 self .enable_global_explain = enable_global_explain
405398 self .xgboost_version = xgboost_version
406399 self ._bqml_model : Optional [core .BqmlModel ] = None
@@ -432,7 +425,8 @@ def _bqml_options(self) -> Dict[str, str | int | bool | float | List[str]]:
432425 """The model options as they will be set for BQML"""
433426 return {
434427 "model_type" : "RANDOM_FOREST_REGRESSOR" ,
435- "num_parallel_tree" : self .num_parallel_tree ,
428+ "early_stop" : True ,
429+ "num_parallel_tree" : self .n_estimators ,
436430 "tree_method" : self .tree_method ,
437431 "min_tree_child_weight" : self .min_tree_child_weight ,
438432 "colsample_bytree" : self .colsample_bytree ,
@@ -443,8 +437,7 @@ def _bqml_options(self) -> Dict[str, str | int | bool | float | List[str]]:
443437 "subsample" : self .subsample ,
444438 "l1_reg" : self .reg_alpha ,
445439 "l2_reg" : self .reg_lambda ,
446- "early_stop" : self .early_stop ,
447- "min_rel_progress" : self .min_rel_progress ,
440+ "min_rel_progress" : self .tol ,
448441 "data_split_method" : "NO_SPLIT" ,
449442 "enable_global_explain" : self .enable_global_explain ,
450443 "xgboost_version" : self .xgboost_version ,
@@ -536,7 +529,7 @@ class RandomForestClassifier(
536529
537530 def __init__ (
538531 self ,
539- num_parallel_tree : int = 100 ,
532+ n_estimators : int = 100 ,
540533 * ,
541534 tree_method : Literal ["auto" , "exact" , "approx" , "hist" ] = "auto" ,
542535 min_tree_child_weight : int = 1 ,
@@ -548,12 +541,11 @@ def __init__(
548541 subsample : float = 0.8 ,
549542 reg_alpha : float = 0.0 ,
550543 reg_lambda : float = 1.0 ,
551- early_stop = True ,
552- min_rel_progress : float = 0.01 ,
544+ tol : float = 0.01 ,
553545 enable_global_explain = False ,
554546 xgboost_version : Literal ["0.9" , "1.1" ] = "0.9" ,
555547 ):
556- self .num_parallel_tree = num_parallel_tree
548+ self .n_estimators = n_estimators
557549 self .tree_method = tree_method
558550 self .min_tree_child_weight = min_tree_child_weight
559551 self .colsample_bytree = colsample_bytree
@@ -564,8 +556,7 @@ def __init__(
564556 self .subsample = subsample
565557 self .reg_alpha = reg_alpha
566558 self .reg_lambda = reg_lambda
567- self .early_stop = early_stop
568- self .min_rel_progress = min_rel_progress
559+ self .tol = tol
569560 self .enable_global_explain = enable_global_explain
570561 self .xgboost_version = xgboost_version
571562 self ._bqml_model : Optional [core .BqmlModel ] = None
@@ -597,7 +588,8 @@ def _bqml_options(self) -> Dict[str, str | int | bool | float | List[str]]:
597588 """The model options as they will be set for BQML"""
598589 return {
599590 "model_type" : "RANDOM_FOREST_CLASSIFIER" ,
600- "num_parallel_tree" : self .num_parallel_tree ,
591+ "early_stop" : True ,
592+ "num_parallel_tree" : self .n_estimators ,
601593 "tree_method" : self .tree_method ,
602594 "min_tree_child_weight" : self .min_tree_child_weight ,
603595 "colsample_bytree" : self .colsample_bytree ,
@@ -608,8 +600,7 @@ def _bqml_options(self) -> Dict[str, str | int | bool | float | List[str]]:
608600 "subsample" : self .subsample ,
609601 "l1_reg" : self .reg_alpha ,
610602 "l2_reg" : self .reg_lambda ,
611- "early_stop" : self .early_stop ,
612- "min_rel_progress" : self .min_rel_progress ,
603+ "min_rel_progress" : self .tol ,
613604 "data_split_method" : "NO_SPLIT" ,
614605 "enable_global_explain" : self .enable_global_explain ,
615606 "xgboost_version" : self .xgboost_version ,
0 commit comments