@@ -123,12 +123,17 @@ def test_vector_search_basic_params_with_df():
123123 "embedding" : [[1.0 , 2.0 ], [3.0 , 5.2 ]],
124124 }
125125 )
126- vector_search_result = bbq .vector_search (
127- base_table = "bigframes-dev.bigframes_tests_sys.base_table" ,
128- column_to_search = "my_embedding" ,
129- query = search_query ,
130- top_k = 2 ,
131- ).to_pandas () # type:ignore
126+ vector_search_result = (
127+ bbq .vector_search (
128+ base_table = "bigframes-dev.bigframes_tests_sys.base_table" ,
129+ column_to_search = "my_embedding" ,
130+ query = search_query ,
131+ top_k = 2 ,
132+ )
133+ .sort_values ("distance" )
134+ .sort_index ()
135+ .to_pandas ()
136+ ) # type:ignore
132137 expected = pd .DataFrame (
133138 {
134139 "query_id" : ["cat" , "dog" , "dog" , "cat" ],
@@ -173,22 +178,39 @@ def test_vector_search_different_params_with_query(session):
173178 base_table = base_df .to_gbq ()
174179 try :
175180 search_query = bpd .Series ([[0.75 , 0.25 ], [- 0.25 , - 0.75 ]], session = session )
176- vector_search_result = bbq .vector_search (
177- base_table = base_table ,
178- column_to_search = "my_embedding" ,
179- query = search_query ,
180- distance_type = "cosine" ,
181- top_k = 2 ,
182- ).to_pandas () # type:ignore
181+ vector_search_result = (
182+ bbq .vector_search (
183+ base_table = base_table ,
184+ column_to_search = "my_embedding" ,
185+ query = search_query ,
186+ distance_type = "cosine" ,
187+ top_k = 2 ,
188+ )
189+ .sort_values ("distance" )
190+ .sort_index ()
191+ .to_pandas ()
192+ ) # type:ignore
183193 expected = pd .DataFrame (
184194 {
185- "0" : {np .int64 (0 ): [0.75 , 0.25 ], np .int64 (1 ): [- 0.25 , - 0.75 ]},
186- "id" : {np .int64 (0 ): 1 , np .int64 (1 ): 4 },
187- "my_embedding" : {np .int64 (0 ): [0.0 , 1.0 ], np .int64 (1 ): [- 1.0 , 0.0 ]},
188- "distance" : {
189- np .int64 (0 ): 0.683772233983162 ,
190- np .int64 (1 ): 0.683772233983162 ,
191- },
195+ "0" : [
196+ [0.75 , 0.25 ],
197+ [0.75 , 0.25 ],
198+ [- 0.25 , - 0.75 ],
199+ [- 0.25 , - 0.75 ],
200+ ],
201+ "id" : [2 , 1 , 3 , 4 ],
202+ "my_embedding" : [
203+ [1.0 , 0.0 ],
204+ [0.0 , 1.0 ],
205+ [0.0 , - 1.0 ],
206+ [- 1.0 , 0.0 ],
207+ ],
208+ "distance" : [
209+ 0.051317 ,
210+ 0.683772 ,
211+ 0.051317 ,
212+ 0.683772 ,
213+ ],
192214 },
193215 index = pd .Index ([0 , 0 , 1 , 1 ], dtype = "Int64" ),
194216 )
0 commit comments