@@ -986,9 +986,9 @@ def drop_duplicates(
986986
987987 **Examples:**
988988
989-
990989 Generate a Series with duplicated entries.
991990
991+ >>> import bigframes.pandas as bpd
992992 >>> s = bpd.Series(['llama', 'cow', 'llama', 'beetle', 'llama', 'hippo'],
993993 ... name='animal')
994994 >>> s
@@ -1176,7 +1176,7 @@ def round(self, decimals: int = 0) -> Series:
11761176
11771177 **Examples:**
11781178
1179-
1179+ >>> import bigframes.pandas as bpd
11801180 >>> s = bpd.Series([0.1, 1.3, 2.7])
11811181 >>> s.round()
11821182 0 0.0
@@ -1283,17 +1283,17 @@ def autocorr(self, lag: int = 1) -> float:
12831283
12841284
12851285 >>> s = bpd.Series([0.25, 0.5, 0.2, -0.05])
1286- >>> s.autocorr() # doctest: +ELLIPSIS
1287- np.float64(0.10355263309024067)
1286+ >>> s.autocorr()
1287+ 0.10355263309024065
12881288
12891289 >>> s.autocorr(lag=2)
1290- np.float64( -1.0)
1290+ -1.0
12911291
12921292 If the Pearson correlation is not well defined, then 'NaN' is returned.
12931293
12941294 >>> s = bpd.Series([1, 0, 0, 0])
12951295 >>> s.autocorr()
1296- np.float64( nan)
1296+ nan
12971297
12981298 Args:
12991299 lag (int, default 1):
@@ -1927,10 +1927,10 @@ def combine(
19271927
19281928 **Examples:**
19291929
1930-
19311930 Consider 2 Datasets ``s1`` and ``s2`` containing
19321931 highest clocked speeds of different birds.
19331932
1933+ >>> import bigframes.pandas as bpd
19341934 >>> s1 = bpd.Series({'falcon': 330.0, 'eagle': 160.0})
19351935 >>> s1
19361936 falcon 330.0
@@ -2376,7 +2376,7 @@ def replace(
23762376
23772377 **Examples:**
23782378
2379-
2379+ >>> import bigframes.pandas as bpd
23802380 >>> s = bpd.Series([1, 2, 3, 4, 5])
23812381 >>> s
23822382 0 1
@@ -2684,7 +2684,7 @@ def cumprod(self):
26842684
26852685 **Examples:**
26862686
2687-
2687+ >>> import bigframes.pandas as bpd
26882688 >>> s = bpd.Series([2, np.nan, 5, -1, 0])
26892689 >>> s
26902690 0 2.0
@@ -3973,7 +3973,7 @@ def pow(self, other) -> Series:
39733973
39743974 **Examples:**
39753975
3976-
3976+ >>> import bigframes.pandas as bpd
39773977 >>> a = bpd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
39783978 >>> a
39793979 a 1.0
@@ -4006,6 +4006,7 @@ def pow(self, other) -> Series:
40064006 The result of the operation.
40074007
40084008 """
4009+ # TODO(b/452366836): adjust sample if needed to match pyarrow semantics.
40094010 raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
40104011
40114012 def __pow__ (self , other ):
@@ -4055,7 +4056,7 @@ def rpow(self, other) -> Series:
40554056
40564057 **Examples:**
40574058
4058-
4059+ >>> import bigframes.pandas as bpd
40594060 >>> a = bpd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])
40604061 >>> a
40614062 a 1.0
@@ -4610,7 +4611,7 @@ def quantile(
46104611
46114612 **Examples:**
46124613
4613-
4614+ >>> import bigframes.pandas as bpd
46144615 >>> s = bpd.Series([1, 2, 3, 4])
46154616 >>> s.quantile(.5)
46164617 np.float64(2.5)
@@ -5290,7 +5291,7 @@ def str(self):
52905291
52915292 **Examples:**
52925293
5293-
5294+ >>> import bigframes.pandas as bpd
52945295 >>> s = bpd.Series(["A_Str_Series"])
52955296 >>> s
52965297 0 A_Str_Series
@@ -5317,7 +5318,7 @@ def plot(self):
53175318
53185319 **Examples:**
53195320
5320-
5321+ >>> import bigframes.pandas as bpd
53215322 >>> ser = bpd.Series([1, 2, 3, 3])
53225323 >>> plot = ser.plot(kind='hist', title="My plot")
53235324 >>> plot
0 commit comments