@@ -1829,7 +1829,7 @@ def udf(
18291829 Turning an arbitrary python function into a BigQuery managed python udf:
18301830
18311831 >>> bq_name = datetime.datetime.now().strftime("bigframes_%Y%m%d%H%M%S%f")
1832- >>> @bpd.udf(dataset="bigfranes_testing", name=bq_name)
1832+ >>> @bpd.udf(dataset="bigfranes_testing", name=bq_name) # doctest: +SKIP
18331833 ... def minutes_to_hours(x: int) -> float:
18341834 ... return x/60
18351835
@@ -1842,8 +1842,8 @@ def udf(
18421842 4 120
18431843 dtype: Int64
18441844
1845- >>> hours = minutes.apply(minutes_to_hours)
1846- >>> hours
1845+ >>> hours = minutes.apply(minutes_to_hours) # doctest: +SKIP
1846+ >>> hours # doctest: +SKIP
18471847 0 0.0
18481848 1 0.5
18491849 2 1.0
@@ -1856,7 +1856,7 @@ def udf(
18561856 packages (optionally with the package version) via `packages` param.
18571857
18581858 >>> bq_name = datetime.datetime.now().strftime("bigframes_%Y%m%d%H%M%S%f")
1859- >>> @bpd.udf(
1859+ >>> @bpd.udf( # doctest: +SKIP
18601860 ... dataset="bigfranes_testing",
18611861 ... name=bq_name,
18621862 ... packages=["cryptography"]
@@ -1873,14 +1873,14 @@ def udf(
18731873 ... return f.encrypt(input.encode()).decode()
18741874
18751875 >>> names = bpd.Series(["Alice", "Bob"])
1876- >>> hashes = names.apply(get_hash)
1876+ >>> hashes = names.apply(get_hash) # doctest: +SKIP
18771877
18781878 You can clean-up the BigQuery functions created above using the BigQuery
18791879 client from the BigQuery DataFrames session:
18801880
18811881 >>> session = bpd.get_global_session()
1882- >>> session.bqclient.delete_routine(minutes_to_hours.bigframes_bigquery_function)
1883- >>> session.bqclient.delete_routine(get_hash.bigframes_bigquery_function)
1882+ >>> session.bqclient.delete_routine(minutes_to_hours.bigframes_bigquery_function) # doctest: +SKIP
1883+ >>> session.bqclient.delete_routine(get_hash.bigframes_bigquery_function) # doctest: +SKIP
18841884
18851885 Args:
18861886 input_types (type or sequence(type), Optional):
0 commit comments