@@ -52,14 +52,13 @@ def generate(
5252
5353 >>> import bigframes.pandas as bpd
5454 >>> import bigframes.bigquery as bbq
55- >>> bpd.options.display.progress_bar = None
5655 >>> country = bpd.Series(["Japan", "Canada"])
57- >>> bbq.ai.generate(("What's the capital city of ", country, " one word only"))
56+ >>> bbq.ai.generate(("What's the capital city of ", country, " one word only")) # doctest: +SKIP
5857 0 {'result': 'Tokyo\\ n', 'full_response': '{"cand...
5958 1 {'result': 'Ottawa\\ n', 'full_response': '{"can...
6059 dtype: struct<result: string, full_response: extension<dbjson<JSONArrowType>>, status: string>[pyarrow]
6160
62- >>> bbq.ai.generate(("What's the capital city of ", country, " one word only")).struct.field("result")
61+ >>> bbq.ai.generate(("What's the capital city of ", country, " one word only")).struct.field("result") # doctest: +SKIP
6362 0 Tokyo\\ n
6463 1 Ottawa\\ n
6564 Name: result, dtype: string
@@ -125,7 +124,6 @@ def generate_bool(
125124
126125 >>> import bigframes.pandas as bpd
127126 >>> import bigframes.bigquery as bbq
128- >>> bpd.options.display.progress_bar = None
129127 >>> df = bpd.DataFrame({
130128 ... "col_1": ["apple", "bear", "pear"],
131129 ... "col_2": ["fruit", "animal", "animal"]
@@ -203,8 +201,7 @@ def generate_int(
203201
204202 >>> import bigframes.pandas as bpd
205203 >>> import bigframes.bigquery as bbq
206- >>> bpd.options.display.progress_bar = None
207- >>> animal = bpd.Series(["Kangaroo", "Rabbit", "Spider"])
204+ >>> animal = bpd.Series(["Kangaroo", "Rabbit", "Spider"])
208205 >>> bbq.ai.generate_int(("How many legs does a ", animal, " have?"))
209206 0 {'result': 2, 'full_response': '{"candidates":...
210207 1 {'result': 4, 'full_response': '{"candidates":...
@@ -278,8 +275,7 @@ def generate_double(
278275
279276 >>> import bigframes.pandas as bpd
280277 >>> import bigframes.bigquery as bbq
281- >>> bpd.options.display.progress_bar = None
282- >>> animal = bpd.Series(["Kangaroo", "Rabbit", "Spider"])
278+ >>> animal = bpd.Series(["Kangaroo", "Rabbit", "Spider"])
283279 >>> bbq.ai.generate_double(("How many legs does a ", animal, " have?"))
284280 0 {'result': 2.0, 'full_response': '{"candidates...
285281 1 {'result': 4.0, 'full_response': '{"candidates...
@@ -350,8 +346,7 @@ def if_(
350346 **Examples:**
351347 >>> import bigframes.pandas as bpd
352348 >>> import bigframes.bigquery as bbq
353- >>> bpd.options.display.progress_bar = None
354- >>> us_state = bpd.Series(["Massachusetts", "Illinois", "Hawaii"])
349+ >>> us_state = bpd.Series(["Massachusetts", "Illinois", "Hawaii"])
355350 >>> bbq.ai.if_((us_state, " has a city called Springfield"))
356351 0 True
357352 1 True
@@ -400,8 +395,7 @@ def classify(
400395
401396 >>> import bigframes.pandas as bpd
402397 >>> import bigframes.bigquery as bbq
403- >>> bpd.options.display.progress_bar = None
404- >>> df = bpd.DataFrame({'creature': ['Cat', 'Salmon']})
398+ >>> df = bpd.DataFrame({'creature': ['Cat', 'Salmon']})
405399 >>> df['type'] = bbq.ai.classify(df['creature'], ['Mammal', 'Fish'])
406400 >>> df
407401 creature type
@@ -451,8 +445,7 @@ def score(
451445
452446 >>> import bigframes.pandas as bpd
453447 >>> import bigframes.bigquery as bbq
454- >>> bpd.options.display.progress_bar = None
455- >>> animal = bpd.Series(["Tiger", "Rabbit", "Blue Whale"])
448+ >>> animal = bpd.Series(["Tiger", "Rabbit", "Blue Whale"])
456449 >>> bbq.ai.score(("Rank the relative weights of ", animal, " on the scale from 1 to 3")) # doctest: +SKIP
457450 0 2.0
458451 1 1.0
0 commit comments