@@ -193,7 +193,7 @@ def agg(
193193
194194 # Run model
195195 predict_df = typing .cast (
196- bigframes .dataframe .DataFrame , model .predict (prompt_s )
196+ bigframes .dataframe .DataFrame , model .predict (prompt_s , temperature = 0.0 )
197197 )
198198 agg_df [column ] = predict_df ["ml_generate_text_llm_result" ].combine_first (
199199 single_row_df
@@ -344,7 +344,8 @@ def filter(self, instruction: str, model):
344344 results = typing .cast (
345345 DataFrame ,
346346 model .predict (
347- self ._make_prompt (columns , user_instruction , output_instruction )
347+ self ._make_prompt (columns , user_instruction , output_instruction ),
348+ temperature = 0.0 ,
348349 ),
349350 )
350351
@@ -418,7 +419,8 @@ def map(self, instruction: str, output_column: str, model):
418419 results = typing .cast (
419420 Series ,
420421 model .predict (
421- self ._make_prompt (columns , user_instruction , output_instruction )
422+ self ._make_prompt (columns , user_instruction , output_instruction ),
423+ temperature = 0.0 ,
422424 )["ml_generate_text_llm_result" ],
423425 )
424426
@@ -776,7 +778,9 @@ def _topk_partition(
776778
777779 import bigframes .dataframe
778780
779- predict_df = typing .cast (bigframes .dataframe .DataFrame , model .predict (prompt_s ))
781+ predict_df = typing .cast (
782+ bigframes .dataframe .DataFrame , model .predict (prompt_s , temperature = 0.0 )
783+ )
780784
781785 marks = predict_df ["ml_generate_text_llm_result" ].str .contains ("2" )
782786 more_relavant : bigframes .dataframe .DataFrame = df [marks ]
0 commit comments