@@ -4285,13 +4285,16 @@ def test_apply_lambda(scalars_dfs, col, lambda_):
42854285 bf_result = bf_col .apply (lambda_ , by_row = False ).to_pandas ()
42864286
42874287 pd_col = scalars_pandas_df [col ]
4288- if pd .__version__ . startswith ("2.2" ):
4288+ if pd .__version__ [: 3 ] in ("2.2" , "2.3 " ):
42894289 pd_result = pd_col .apply (lambda_ , by_row = False )
42904290 else :
42914291 pd_result = pd_col .apply (lambda_ )
42924292
42934293 # ignore dtype check, which are Int64 and object respectively
4294- assert_series_equal (bf_result , pd_result , check_dtype = False )
4294+ # Some columns implicitly convert to floating point. Use check_exact=False to ensure we're "close enough"
4295+ assert_series_equal (
4296+ bf_result , pd_result , check_dtype = False , check_exact = False , rtol = 0.001
4297+ )
42954298
42964299
42974300@pytest .mark .parametrize (
@@ -4375,13 +4378,16 @@ def foo(x):
43754378
43764379 pd_col = scalars_pandas_df ["int64_col" ]
43774380
4378- if pd .__version__ . startswith ("2.2" ):
4381+ if pd .__version__ [: 3 ] in ("2.2" , "2.3 " ):
43794382 pd_result = pd_col .apply (foo , by_row = False )
43804383 else :
43814384 pd_result = pd_col .apply (foo )
43824385
43834386 # ignore dtype check, which are Int64 and object respectively
4384- assert_series_equal (bf_result , pd_result , check_dtype = False )
4387+ # Some columns implicitly convert to floating point. Use check_exact=False to ensure we're "close enough"
4388+ assert_series_equal (
4389+ bf_result , pd_result , check_dtype = False , check_exact = False , rtol = 0.001
4390+ )
43854391
43864392
43874393@pytest .mark .parametrize (
0 commit comments