@@ -2597,14 +2597,14 @@ def any(self, *, axis=0, bool_only: bool = False):
25972597 <BLANKLINE>
25982598 [2 rows x 2 columns]
25992599
2600- Checking if each column contains at least one True element (the default behavior without an explicit axis parameter).
2600+ Checking if each column contains at least one True element(the default behavior without an explicit axis parameter):
26012601
26022602 >>> df.any()
26032603 A True
26042604 B False
26052605 dtype: boolean
26062606
2607- Checking if each row contains at least one True element.
2607+ Checking if each row contains at least one True element:
26082608
26092609 >>> df.any(axis=1)
26102610 0 True
@@ -2644,14 +2644,14 @@ def all(self, axis=0, *, bool_only: bool = False):
26442644 <BLANKLINE>
26452645 [2 rows x 2 columns]
26462646
2647- Checking if all values in each column are True (the default behavior without an explicit axis parameter).
2647+ Checking if all values in each column are True(the default behavior without an explicit axis parameter):
26482648
26492649 >>> df.all()
26502650 A True
26512651 B False
26522652 dtype: boolean
26532653
2654- Checking across rows to see if all values are True.
2654+ Checking across rows to see if all values are True:
26552655
26562656 >>> df.all(axis=1)
26572657 0 False
@@ -2688,14 +2688,14 @@ def prod(self, axis=0, *, numeric_only: bool = False):
26882688 <BLANKLINE>
26892689 [3 rows x 2 columns]
26902690
2691- Calculating the product of each column (the default behavior without an explicit axis parameter).
2691+ Calculating the product of each column(the default behavior without an explicit axis parameter):
26922692
26932693 >>> df.prod()
26942694 A 6.0
26952695 B 160.875
26962696 dtype: Float64
26972697
2698- Calculating the product of each row.
2698+ Calculating the product of each row:
26992699
27002700 >>> df.prod(axis=1)
27012701 0 4.5
@@ -2911,11 +2911,37 @@ def skew(self, *, numeric_only: bool = False):
29112911 raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
29122912
29132913 def kurt (self , * , numeric_only : bool = False ):
2914- """Return unbiased kurtosis over requested axis .
2914+ """Return unbiased kurtosis over columns .
29152915
29162916 Kurtosis obtained using Fisher's definition of
29172917 kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
29182918
2919+ **Examples:**
2920+
2921+ >>> import bigframes.pandas as bpd
2922+ >>> bpd.options.display.progress_bar = None
2923+
2924+ >>> df = bpd.DataFrame({"A": [1, 2, 3, 4, 5],
2925+ ... "B": [3, 4, 3, 2, 1],
2926+ ... "C": [2, 2, 3, 2, 2]})
2927+ >>> df
2928+ A B C
2929+ 0 1 3 2
2930+ 1 2 4 2
2931+ 2 3 3 3
2932+ 3 4 2 2
2933+ 4 5 1 2
2934+ <BLANKLINE>
2935+ [5 rows x 3 columns]
2936+
2937+ Calculating the kurtosis value of each column:
2938+
2939+ >>> df.kurt()
2940+ A -1.2
2941+ B -0.177515
2942+ C 5.0
2943+ dtype: Float64
2944+
29192945 Args:
29202946 numeric_only (bool, default False):
29212947 Include only float, int, boolean columns.
@@ -2926,10 +2952,36 @@ def kurt(self, *, numeric_only: bool = False):
29262952 raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
29272953
29282954 def std (self , * , numeric_only : bool = False ):
2929- """Return sample standard deviation over requested axis .
2955+ """Return sample standard deviation over columns .
29302956
29312957 Normalized by N-1 by default.
29322958
2959+ **Examples:**
2960+
2961+ >>> import bigframes.pandas as bpd
2962+ >>> bpd.options.display.progress_bar = None
2963+
2964+ >>> df = bpd.DataFrame({"A": [1, 2, 3, 4, 5],
2965+ ... "B": [3, 4, 3, 2, 1],
2966+ ... "C": [2, 2, 3, 2, 2]})
2967+ >>> df
2968+ A B C
2969+ 0 1 3 2
2970+ 1 2 4 2
2971+ 2 3 3 3
2972+ 3 4 2 2
2973+ 4 5 1 2
2974+ <BLANKLINE>
2975+ [5 rows x 3 columns]
2976+
2977+ Calculating the standard deviation of each column:
2978+
2979+ >>> df.std()
2980+ A 1.581139
2981+ B 1.140175
2982+ C 0.447214
2983+ dtype: Float64
2984+
29332985 Args:
29342986 numeric_only (bool. default False):
29352987 Default False. Include only float, int, boolean columns.
@@ -2941,11 +2993,37 @@ def std(self, *, numeric_only: bool = False):
29412993
29422994 def count (self , * , numeric_only : bool = False ):
29432995 """
2944- Count non-NA cells for each column or row .
2996+ Count non-NA cells for each column.
29452997
29462998 The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending
29472999 on `pandas.options.mode.use_inf_as_na`) are considered NA.
29483000
3001+ **Examples:**
3002+
3003+ >>> import bigframes.pandas as bpd
3004+ >>> bpd.options.display.progress_bar = None
3005+
3006+ >>> df = bpd.DataFrame({"A": [1, None, 3, 4, 5],
3007+ ... "B": [1, 2, 3, 4, 5],
3008+ ... "C": [None, 3.5, None, 4.5, 5.0]})
3009+ >>> df
3010+ A B C
3011+ 0 1.0 1 <NA>
3012+ 1 <NA> 2 3.5
3013+ 2 3.0 3 <NA>
3014+ 3 4.0 4 4.5
3015+ 4 5.0 5 5.0
3016+ <BLANKLINE>
3017+ [5 rows x 3 columns]
3018+
3019+ Counting non-NA values for each column:
3020+
3021+ >>> df.count()
3022+ A 4.0
3023+ B 5.0
3024+ C 3.0
3025+ dtype: Float64
3026+
29493027 Args:
29503028 numeric_only (bool, default False):
29513029 Include only `float`, `int` or `boolean` data.
0 commit comments