-
Notifications
You must be signed in to change notification settings - Fork 998
Open
Description
Hi,
In the mojo-resource tutorial, you show how to predict from a java application, during my testing I was unable to predict anything other than the default prediction shown in the tutorial even by specifically setting the testRow variable.
https://github.com/h2oai/h2o-tutorials/tree/master/tutorials/mojo-resource
`
URL mojoURL = Main.class.getResource("irisgbm.zip");
MojoReaderBackend reader = MojoReaderBackendFactory.createReaderBackend(mojoURL,
MojoReaderBackendFactory.CachingStrategy.MEMORY);
MojoModel model = ModelMojoReader.readFrom(reader);
EasyPredictModelWrapper modelWrapper = new EasyPredictModelWrapper(model);
RowData testRow = new RowData();
for (int i = 0; i < args.length; i++)
{
testRow.put("C"+i, Double.valueOf(args[i]));
}
if (testRow.size() == 0)
{
System.out.println("Add test values to testRow");
testRow.put("C0", 5.1);
testRow.put("C1", 3.5);
testRow.put("C2", 1.4);
testRow.put("C3", 0.2);
}
System.out.println("C0: " + testRow.get("C0"));
System.out.println("C1: " + testRow.get("C1"));
System.out.println("C2: " + testRow.get("C2"));
System.out.println("C3: " + testRow.get("C3"));
System.out.println("");
MultinomialModelPrediction prediction = (MultinomialModelPrediction)modelWrapper.predict(testRow);
for (int i = 0; i < prediction.classProbabilities.length; i++)
System.out.println(modelWrapper.getResponseDomainValues()[i] + ": "+ prediction.classProbabilities[i]);
System.out.println("Prediction: " + prediction.label);
System.out.println("Prediction Index: " + prediction.labelIndex);
`
Metadata
Metadata
Assignees
Labels
No labels