|
| 1 | +"""Tests for timm.layers.drop module (DropBlock, DropPath).""" |
| 2 | +import torch |
| 3 | +import pytest |
| 4 | + |
| 5 | +from timm.layers.drop import drop_block_2d, DropBlock2d, drop_path, DropPath |
| 6 | + |
| 7 | + |
| 8 | +class TestDropBlock2d: |
| 9 | + """Test drop_block_2d function and DropBlock2d module.""" |
| 10 | + |
| 11 | + def test_drop_block_2d_output_shape(self): |
| 12 | + """Test that output shape matches input shape.""" |
| 13 | + for h, w in [(7, 7), (4, 8), (10, 5), (3, 3)]: |
| 14 | + x = torch.ones((2, 3, h, w)) |
| 15 | + result = drop_block_2d(x, drop_prob=0.1, block_size=3) |
| 16 | + assert result.shape == x.shape, f"Shape mismatch for input ({h}, {w})" |
| 17 | + |
| 18 | + def test_drop_block_2d_no_drop_when_prob_zero(self): |
| 19 | + """Test that no dropping occurs when drop_prob=0.""" |
| 20 | + x = torch.ones((2, 3, 8, 8)) |
| 21 | + result = drop_block_2d(x, drop_prob=0.0, block_size=3) |
| 22 | + assert torch.allclose(result, x) |
| 23 | + |
| 24 | + def test_drop_block_2d_approximate_keep_ratio(self): |
| 25 | + """Test that the drop ratio is approximately correct.""" |
| 26 | + torch.manual_seed(123) |
| 27 | + # Use large batch for statistical stability |
| 28 | + x = torch.ones((32, 16, 56, 56)) |
| 29 | + drop_prob = 0.1 |
| 30 | + |
| 31 | + # With scale_by_keep=False, kept values stay at 1.0 and dropped are 0.0 |
| 32 | + # so we can directly measure the drop ratio |
| 33 | + result = drop_block_2d(x, drop_prob=drop_prob, block_size=7, scale_by_keep=False) |
| 34 | + |
| 35 | + total_elements = result.numel() |
| 36 | + dropped_elements = (result == 0).sum().item() |
| 37 | + actual_drop_ratio = dropped_elements / total_elements |
| 38 | + |
| 39 | + # Allow some tolerance since it's stochastic |
| 40 | + assert abs(actual_drop_ratio - drop_prob) < 0.03, \ |
| 41 | + f"Drop ratio {actual_drop_ratio:.3f} not close to expected {drop_prob}" |
| 42 | + |
| 43 | + def test_drop_block_2d_inplace(self): |
| 44 | + """Test inplace operation.""" |
| 45 | + x = torch.ones((2, 3, 8, 8)) |
| 46 | + x_clone = x.clone() |
| 47 | + torch.manual_seed(42) |
| 48 | + result = drop_block_2d(x_clone, drop_prob=0.3, block_size=3, inplace=True) |
| 49 | + assert result is x_clone, "Inplace should return the same tensor" |
| 50 | + |
| 51 | + def test_drop_block_2d_couple_channels_true(self): |
| 52 | + """Test couple_channels=True uses same mask for all channels.""" |
| 53 | + torch.manual_seed(42) |
| 54 | + x = torch.ones((2, 4, 16, 16)) |
| 55 | + result = drop_block_2d(x, drop_prob=0.3, block_size=5, couple_channels=True) |
| 56 | + |
| 57 | + # With couple_channels=True, all channels should have same drop pattern |
| 58 | + for b in range(x.shape[0]): |
| 59 | + mask_c0 = (result[b, 0] == 0).float() |
| 60 | + for c in range(1, x.shape[1]): |
| 61 | + mask_c = (result[b, c] == 0).float() |
| 62 | + assert torch.allclose(mask_c0, mask_c), f"Channel {c} has different mask than channel 0" |
| 63 | + |
| 64 | + def test_drop_block_2d_couple_channels_false(self): |
| 65 | + """Test couple_channels=False uses independent mask per channel.""" |
| 66 | + torch.manual_seed(42) |
| 67 | + x = torch.ones((2, 4, 16, 16)) |
| 68 | + result = drop_block_2d(x, drop_prob=0.3, block_size=5, couple_channels=False) |
| 69 | + |
| 70 | + # With couple_channels=False, channels should have different patterns |
| 71 | + # (with high probability for reasonable drop_prob) |
| 72 | + mask_c0 = (result[0, 0] == 0).float() |
| 73 | + mask_c1 = (result[0, 1] == 0).float() |
| 74 | + # They might occasionally be the same by chance, but very unlikely |
| 75 | + assert not torch.allclose(mask_c0, mask_c1), "Channels should have independent masks" |
| 76 | + |
| 77 | + def test_drop_block_2d_with_noise(self): |
| 78 | + """Test with_noise option adds gaussian noise to dropped regions.""" |
| 79 | + torch.manual_seed(42) |
| 80 | + x = torch.ones((2, 3, 16, 16)) |
| 81 | + result = drop_block_2d(x, drop_prob=0.3, block_size=5, with_noise=True) |
| 82 | + |
| 83 | + # With noise, dropped regions should have non-zero values from gaussian noise |
| 84 | + # The result should contain values other than the scaled kept values |
| 85 | + unique_vals = torch.unique(result) |
| 86 | + assert len(unique_vals) > 2, "With noise should produce varied values" |
| 87 | + |
| 88 | + def test_drop_block_2d_even_block_size(self): |
| 89 | + """Test that even block sizes work correctly.""" |
| 90 | + x = torch.ones((2, 3, 16, 16)) |
| 91 | + for block_size in [2, 4, 6]: |
| 92 | + result = drop_block_2d(x, drop_prob=0.1, block_size=block_size) |
| 93 | + assert result.shape == x.shape, f"Shape mismatch for block_size={block_size}" |
| 94 | + |
| 95 | + def test_drop_block_2d_asymmetric_input(self): |
| 96 | + """Test with asymmetric H != W inputs.""" |
| 97 | + for h, w in [(8, 16), (16, 8), (7, 14), (14, 7)]: |
| 98 | + x = torch.ones((2, 3, h, w)) |
| 99 | + result = drop_block_2d(x, drop_prob=0.1, block_size=5) |
| 100 | + assert result.shape == x.shape, f"Shape mismatch for ({h}, {w})" |
| 101 | + |
| 102 | + def test_drop_block_2d_scale_by_keep(self): |
| 103 | + """Test scale_by_keep parameter.""" |
| 104 | + torch.manual_seed(42) |
| 105 | + x = torch.ones((2, 3, 16, 16)) |
| 106 | + |
| 107 | + # With scale_by_keep=True (default), kept values are scaled up |
| 108 | + result_scaled = drop_block_2d(x.clone(), drop_prob=0.3, block_size=5, scale_by_keep=True) |
| 109 | + kept_vals_scaled = result_scaled[result_scaled > 0] |
| 110 | + # Scaled values should be > 1.0 (scaled up to compensate for drops) |
| 111 | + assert kept_vals_scaled.min() > 1.0, "Scaled values should be > 1.0" |
| 112 | + |
| 113 | + # With scale_by_keep=False, kept values stay at original |
| 114 | + torch.manual_seed(42) |
| 115 | + result_unscaled = drop_block_2d(x.clone(), drop_prob=0.3, block_size=5, scale_by_keep=False) |
| 116 | + kept_vals_unscaled = result_unscaled[result_unscaled > 0] |
| 117 | + # Unscaled values should be exactly 1.0 |
| 118 | + assert torch.allclose(kept_vals_unscaled, torch.ones_like(kept_vals_unscaled)), \ |
| 119 | + "Unscaled values should be 1.0" |
| 120 | + |
| 121 | + |
| 122 | +class TestDropBlock2dModule: |
| 123 | + """Test DropBlock2d nn.Module.""" |
| 124 | + |
| 125 | + def test_deprecated_args_accepted(self): |
| 126 | + """Test that deprecated args (batchwise, fast) are silently accepted.""" |
| 127 | + # These should not raise |
| 128 | + module1 = DropBlock2d(drop_prob=0.1, batchwise=True) |
| 129 | + module2 = DropBlock2d(drop_prob=0.1, fast=False) |
| 130 | + module3 = DropBlock2d(drop_prob=0.1, batchwise=False, fast=True) |
| 131 | + assert module1.drop_prob == 0.1 |
| 132 | + assert module2.drop_prob == 0.1 |
| 133 | + assert module3.drop_prob == 0.1 |
| 134 | + |
| 135 | + def test_unknown_args_warned(self): |
| 136 | + """Test that unknown kwargs emit a warning.""" |
| 137 | + with pytest.warns(UserWarning, match="unexpected keyword argument 'unknown_arg'"): |
| 138 | + DropBlock2d(drop_prob=0.1, unknown_arg=True) |
| 139 | + |
| 140 | + def test_training_mode(self): |
| 141 | + """Test that dropping only occurs in training mode.""" |
| 142 | + module = DropBlock2d(drop_prob=0.5, block_size=3) |
| 143 | + x = torch.ones((2, 3, 8, 8)) |
| 144 | + |
| 145 | + # In eval mode, should return input unchanged |
| 146 | + module.eval() |
| 147 | + result = module(x) |
| 148 | + assert torch.allclose(result, x), "Should not drop in eval mode" |
| 149 | + |
| 150 | + # In train mode, should modify input |
| 151 | + module.train() |
| 152 | + torch.manual_seed(42) |
| 153 | + result = module(x) |
| 154 | + assert not torch.allclose(result, x), "Should drop in train mode" |
| 155 | + |
| 156 | + def test_couple_channels_parameter(self): |
| 157 | + """Test couple_channels parameter is passed through.""" |
| 158 | + x = torch.ones((2, 4, 16, 16)) |
| 159 | + |
| 160 | + # couple_channels=True (default) |
| 161 | + module_coupled = DropBlock2d(drop_prob=0.3, block_size=5, couple_channels=True) |
| 162 | + module_coupled.train() |
| 163 | + torch.manual_seed(42) |
| 164 | + result_coupled = module_coupled(x) |
| 165 | + |
| 166 | + # All channels should have same pattern |
| 167 | + mask_c0 = (result_coupled[0, 0] == 0).float() |
| 168 | + mask_c1 = (result_coupled[0, 1] == 0).float() |
| 169 | + assert torch.allclose(mask_c0, mask_c1) |
| 170 | + |
| 171 | + # couple_channels=False |
| 172 | + module_uncoupled = DropBlock2d(drop_prob=0.3, block_size=5, couple_channels=False) |
| 173 | + module_uncoupled.train() |
| 174 | + torch.manual_seed(42) |
| 175 | + result_uncoupled = module_uncoupled(x) |
| 176 | + |
| 177 | + # Channels should have different patterns |
| 178 | + mask_c0 = (result_uncoupled[0, 0] == 0).float() |
| 179 | + mask_c1 = (result_uncoupled[0, 1] == 0).float() |
| 180 | + assert not torch.allclose(mask_c0, mask_c1) |
| 181 | + |
| 182 | + |
| 183 | +class TestDropPath: |
| 184 | + """Test drop_path function and DropPath module.""" |
| 185 | + |
| 186 | + def test_no_drop_when_prob_zero(self): |
| 187 | + """Test that no dropping occurs when drop_prob=0.""" |
| 188 | + x = torch.ones((4, 8, 16, 16)) |
| 189 | + result = drop_path(x, drop_prob=0.0, training=True) |
| 190 | + assert torch.allclose(result, x) |
| 191 | + |
| 192 | + def test_no_drop_when_not_training(self): |
| 193 | + """Test that no dropping occurs when not training.""" |
| 194 | + x = torch.ones((4, 8, 16, 16)) |
| 195 | + result = drop_path(x, drop_prob=0.5, training=False) |
| 196 | + assert torch.allclose(result, x) |
| 197 | + |
| 198 | + def test_drop_path_scaling(self): |
| 199 | + """Test that scale_by_keep properly scales kept paths.""" |
| 200 | + torch.manual_seed(42) |
| 201 | + x = torch.ones((100, 8, 4, 4)) # Large batch for statistical stability |
| 202 | + keep_prob = 0.8 |
| 203 | + drop_prob = 1 - keep_prob |
| 204 | + |
| 205 | + result = drop_path(x, drop_prob=drop_prob, training=True, scale_by_keep=True) |
| 206 | + |
| 207 | + # Kept samples should be scaled by 1/keep_prob = 1.25 |
| 208 | + kept_mask = (result[:, 0, 0, 0] != 0) |
| 209 | + if kept_mask.any(): |
| 210 | + kept_vals = result[kept_mask, 0, 0, 0] |
| 211 | + expected_scale = 1.0 / keep_prob |
| 212 | + assert torch.allclose(kept_vals, torch.full_like(kept_vals, expected_scale), atol=1e-5) |
| 213 | + |
| 214 | + def test_drop_path_no_scaling(self): |
| 215 | + """Test that scale_by_keep=False does not scale.""" |
| 216 | + torch.manual_seed(42) |
| 217 | + x = torch.ones((100, 8, 4, 4)) |
| 218 | + result = drop_path(x, drop_prob=0.2, training=True, scale_by_keep=False) |
| 219 | + |
| 220 | + # Kept samples should remain at 1.0 |
| 221 | + kept_mask = (result[:, 0, 0, 0] != 0) |
| 222 | + if kept_mask.any(): |
| 223 | + kept_vals = result[kept_mask, 0, 0, 0] |
| 224 | + assert torch.allclose(kept_vals, torch.ones_like(kept_vals)) |
| 225 | + |
| 226 | + |
| 227 | +class TestDropPathModule: |
| 228 | + """Test DropPath nn.Module.""" |
| 229 | + |
| 230 | + def test_training_mode(self): |
| 231 | + """Test that dropping only occurs in training mode.""" |
| 232 | + module = DropPath(drop_prob=0.5) |
| 233 | + x = torch.ones((32, 8, 4, 4)) # Larger batch for statistical reliability |
| 234 | + |
| 235 | + module.eval() |
| 236 | + result = module(x) |
| 237 | + assert torch.allclose(result, x), "Should not drop in eval mode" |
| 238 | + |
| 239 | + module.train() |
| 240 | + torch.manual_seed(42) |
| 241 | + result = module(x) |
| 242 | + # With 50% drop prob on 32 samples, very unlikely all survive |
| 243 | + # Check that at least one sample has zeros (was dropped) |
| 244 | + has_zeros = (result == 0).any() |
| 245 | + assert has_zeros, "Should drop some paths in train mode" |
| 246 | + |
| 247 | + def test_extra_repr(self): |
| 248 | + """Test extra_repr for nice printing.""" |
| 249 | + module = DropPath(drop_prob=0.123) |
| 250 | + repr_str = module.extra_repr() |
| 251 | + assert "0.123" in repr_str |
0 commit comments