diff --git a/timm/models/efficientnet.py b/timm/models/efficientnet.py index e48e284fbe..700027f836 100644 --- a/timm/models/efficientnet.py +++ b/timm/models/efficientnet.py @@ -458,13 +458,14 @@ def _create_effnet(variant, pretrained=False, **kwargs): kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'global_pool') model_cls = EfficientNetFeatures features_mode = 'cls' + pretrained_strict = kwargs.pop('pretrained_strict', True) model = build_model_with_cfg( model_cls, variant, pretrained, features_only=features_mode == 'cfg', - pretrained_strict=features_mode != 'cls', + pretrained_strict=pretrained_strict and features_mode != 'cls', kwargs_filter=kwargs_filter, **kwargs, ) @@ -1446,12 +1447,16 @@ def _cfg(url='', **kwargs): 'efficientnet_b3_g8_gn.untrained': _cfg( input_size=(3, 288, 288), pool_size=(9, 9), test_input_size=(3, 320, 320), crop_pct=1.0), 'efficientnet_blur_b0.untrained': _cfg(), - 'efficientnet_h_b5.untrained': _cfg( - url='', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0), + 'efficientnet_h_b5.sw_r448_e450_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, + crop_mode='squash', test_input_size=(3, 576, 576)), 'efficientnet_x_b3.untrained': _cfg( url='', input_size=(3, 288, 288), pool_size=(9, 9), crop_pct=0.95), - 'efficientnet_x_b5.untrained': _cfg( - url='', input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0), + 'efficientnet_x_b5.sw_r448_e450_in1k': _cfg( + hf_hub_id='timm/', + input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0, + crop_mode='squash', test_input_size=(3, 576, 576)), 'efficientnet_es.ra_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_ra-f111e99c.pth',