Skip to content

Conversation

@mengniwang95
Copy link
Contributor

@mengniwang95 mengniwang95 commented Dec 8, 2025

User description

Fix flux tuning device issue


PR Type

Bug fix


Description

  • Added device parameter to tune function

  • Moved model to specified device in tune function


Diagram Walkthrough

flowchart LR
  A["tune function"] -- "added device parameter" --> B["model.to(device)"]
Loading

File Walkthrough

Relevant files
Bug fix
main.py
Add device parameter to tune function                                       

examples/pytorch/diffusion_model/diffusers/flux/main.py

  • Added device parameter to tune function
  • Moved model to specified device using .to(device)
+3/-3     

@PRAgent4INC
Copy link
Collaborator

PR Reviewer Guide 🔍

Here are some key observations to aid the review process:

⏱️ Estimated effort to review: 2 🔵🔵⚪⚪⚪
🧪 No relevant tests
🔒 No security concerns identified
⚡ Recommended focus areas for review

Possible Issue

The device argument is added to the tune function but not used in the rest of the function body. Ensure that all parts of the function that require the device are using it correctly.

def tune(device):
    pipe = AutoPipelineForText2Image.from_pretrained(args.model, torch_dtype=torch.bfloat16).to(device)
    model = pipe.transformer

@PRAgent4INC
Copy link
Collaborator

PR Code Suggestions ✨

Explore these optional code suggestions:

CategorySuggestion                                                                                                                                    Impact
General
Pass device to pipeline

Ensure that the device is correctly passed to the pipeline to utilize GPU
acceleration if available.

examples/pytorch/diffusion_model/diffusers/flux/main.py [85]

-pipe = AutoPipelineForText2Image.from_pretrained(args.model, torch_dtype=torch.bfloat16)
+pipe = AutoPipelineForText2Image.from_pretrained(args.model, torch_dtype=torch.bfloat16).to(device)
Suggestion importance[1-10]: 7

__

Why: The suggestion correctly modifies the tune function to pass the device to the pipeline, which is important for utilizing GPU acceleration. However, it does not address the same issue in the inference section, making it less impactful overall.

Medium

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants