@@ -12067,13 +12067,13 @@ <h2 id="Select-a-Classification-Method-(default-SVM)">Select a Classification Me
1206712067
1206812068
1206912069
12070- < div id ="603ff06b-a4df-4091-b524-3acb21a775a2 "> </ div >
12070+ < div id ="6b3611d1-e0af-421e-b0f1-f0df1e9309d2 "> </ div >
1207112071< div class ="output_subarea output_widget_view ">
1207212072< script type ="text/javascript ">
12073- var element = $ ( '#603ff06b-a4df-4091-b524-3acb21a775a2 ' ) ;
12073+ var element = $ ( '#6b3611d1-e0af-421e-b0f1-f0df1e9309d2 ' ) ;
1207412074</ script >
1207512075< script type ="application/vnd.jupyter.widget-view+json ">
12076- { "model_id" : "3c60c6fc2644436ebf8b9b092e6f8612 " , "version_major" : 2 , "version_minor" : 0 }
12076+ { "model_id" : "ab03394bfe0b457ea53b160d07957fc3 " , "version_major" : 2 , "version_minor" : 0 }
1207712077</ script >
1207812078</ div >
1207912079
@@ -12101,7 +12101,8 @@ <h2 id="Train-a-classifier">Train a classifier<a class="anchor-link" href="#Trai
1210112101< span class ="k "> elif</ span > < span class ="p "> (</ span > < span class ="n "> method</ span > < span class ="o "> .</ span > < span class ="n "> value</ span > < span class ="o "> ==</ span > < span class ="s1 "> 'LogisticRegression'</ span > < span class ="p "> ):</ span >
1210212102 < span class ="n "> classifier</ span > < span class ="o "> =</ span > < span class ="n "> LogisticRegression</ span > < span class ="p "> (</ span > < span class ="n "> class_weight</ span > < span class ="o "> =</ span > < span class ="s1 "> 'balanced'</ span > < span class ="p "> ,</ span > < span class ="n "> random_state</ span > < span class ="o "> =</ span > < span class ="mi "> 13</ span > < span class ="p "> ,</ span > < span class ="n "> solver</ span > < span class ="o "> =</ span > < span class ="s1 "> 'lbfgs'</ span > < span class ="p "> ,</ span > < span class ="n "> multi_class</ span > < span class ="o "> =</ span > < span class ="s1 "> 'auto'</ span > < span class ="p "> ,</ span > < span class ="n "> max_iter</ span > < span class ="o "> =</ span > < span class ="mi "> 500</ span > < span class ="p "> )</ span >
1210312103< span class ="k "> elif</ span > < span class ="p "> (</ span > < span class ="n "> method</ span > < span class ="o "> .</ span > < span class ="n "> value</ span > < span class ="o "> ==</ span > < span class ="s1 "> 'NeuralNetwork'</ span > < span class ="p "> ):</ span >
12104- < span class ="n "> classifier</ span > < span class ="o "> =</ span > < span class ="n "> MLPClassifier</ span > < span class ="p "> (</ span > < span class ="n "> hidden_layer_sizes</ span > < span class ="o "> =</ span > < span class ="p "> (</ span > < span class ="mi "> 20</ span > < span class ="p "> ),</ span > < span class ="n "> random_state</ span > < span class ="o "> =</ span > < span class ="mi "> 13</ span > < span class ="p "> ,</ span > < span class ="n "> max_iter</ span > < span class ="o "> =</ span > < span class ="mi "> 1000</ span > < span class ="p "> )</ span >
12104+ < span class ="c1 "> # Neural network with one hidden layer of 20 nodes</ span >
12105+ < span class ="n "> classifier</ span > < span class ="o "> =</ span > < span class ="n "> MLPClassifier</ span > < span class ="p "> (</ span > < span class ="n "> hidden_layer_sizes</ span > < span class ="o "> =</ span > < span class ="p "> (</ span > < span class ="mi "> 20</ span > < span class ="p "> ),</ span > < span class ="n "> random_state</ span > < span class ="o "> =</ span > < span class ="mi "> 13</ span > < span class ="p "> ,</ span > < span class ="n "> early_stopping</ span > < span class ="o "> =</ span > < span class ="kc "> True</ span > < span class ="p "> )</ span >
1210512106
1210612107
1210712108< span class ="n "> classifier</ span > < span class ="o "> .</ span > < span class ="n "> fit</ span > < span class ="p "> (</ span > < span class ="n "> train</ span > < span class ="p "> [</ span > < span class ="n "> feature_col</ span > < span class ="p "> ]</ span > < span class ="o "> .</ span > < span class ="n "> tolist</ span > < span class ="p "> (),</ span > < span class ="n "> train</ span > < span class ="p "> [</ span > < span class ="n "> value_col</ span > < span class ="p "> ])</ span >
0 commit comments