|
8 | 8 |
|
9 | 9 |
|
10 | 10 | def aggregate_categorical_count( |
11 | | - scoring_results: List[ |
12 | | - Dict[str, Union[bool, float, str, List[object], object, None]] |
13 | | - ], |
| 11 | + scoring_results: List[Dict[str, Union[bool, float, str, List[object], object, None]]], |
14 | 12 | ) -> Dict[str, Any]: |
15 | 13 | scores = [str(r["score"]) for r in scoring_results] |
16 | 14 | unique_scores = sorted(list(set(scores))) |
17 | 15 | return {"categorical_count": {s: scores.count(s) for s in unique_scores}} |
18 | 16 |
|
19 | 17 |
|
20 | 18 | def aggregate_average( |
21 | | - scoring_results: List[ |
22 | | - Dict[str, Union[bool, float, str, List[object], object, None]] |
23 | | - ], |
| 19 | + scoring_results: List[Dict[str, Union[bool, float, str, List[object], object, None]]], |
24 | 20 | ) -> Dict[str, Any]: |
25 | 21 | return { |
26 | | - "average": sum( |
27 | | - result["score"] for result in scoring_results if result["score"] is not None |
28 | | - ) |
| 22 | + "average": sum(result["score"] for result in scoring_results if result["score"] is not None) |
29 | 23 | / len([_ for _ in scoring_results if _["score"] is not None]), |
30 | 24 | } |
31 | 25 |
|
32 | 26 |
|
33 | 27 | def aggregate_median( |
34 | | - scoring_results: List[ |
35 | | - Dict[str, Union[bool, float, str, List[object], object, None]] |
36 | | - ], |
| 28 | + scoring_results: List[Dict[str, Union[bool, float, str, List[object], object, None]]], |
37 | 29 | ) -> Dict[str, Any]: |
38 | 30 | scores = [r["score"] for r in scoring_results if r["score"] is not None] |
39 | 31 | median = statistics.median(scores) if scores else None |
40 | 32 | return {"median": median} |
41 | 33 |
|
42 | 34 |
|
43 | 35 | def aggregate_accuracy( |
44 | | - scoring_results: List[ |
45 | | - Dict[str, Union[bool, float, str, List[object], object, None]] |
46 | | - ], |
| 36 | + scoring_results: List[Dict[str, Union[bool, float, str, List[object], object, None]]], |
47 | 37 | ) -> Dict[str, Any]: |
48 | 38 | num_correct = sum(result["score"] for result in scoring_results) |
49 | 39 | avg_score = num_correct / len(scoring_results) |
|
0 commit comments