Skip to content

Commit bd72b58

Browse files
committed
add lookup vit, cite, document later
1 parent e3256d7 commit bd72b58

File tree

2 files changed

+283
-0
lines changed

2 files changed

+283
-0
lines changed

README.md

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2072,4 +2072,20 @@ Coming from computer vision and new to transformers? Here are some resources tha
20722072
}
20732073
```
20742074

2075+
```bibtex
2076+
@inproceedings{Koner2024LookupViTCV,
2077+
title = {LookupViT: Compressing visual information to a limited number of tokens},
2078+
author = {Rajat Koner and Gagan Jain and Prateek Jain and Volker Tresp and Sujoy Paul},
2079+
year = {2024},
2080+
url = {https://api.semanticscholar.org/CorpusID:271244592}
2081+
}
2082+
```
2083+
2084+
```bibtex
2085+
@misc{Rubin2024,
2086+
author = {Ohad Rubin},
2087+
url = {https://medium.com/@ohadrubin/exploring-weight-decay-in-layer-normalization-challenges-and-a-reparameterization-solution-ad4d12c24950}
2088+
}
2089+
```
2090+
20752091
*I visualise a time when we will be to robots what dogs are to humans, and I’m rooting for the machines.* — Claude Shannon

vit_pytorch/look_vit.py

Lines changed: 267 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,267 @@
1+
import torch
2+
from torch import nn
3+
import torch.nn.functional as F
4+
from torch.nn import Module, ModuleList
5+
6+
from einops import einsum, rearrange, repeat, reduce
7+
from einops.layers.torch import Rearrange
8+
9+
# helpers
10+
11+
def exists(val):
12+
return val is not None
13+
14+
def default(val, d):
15+
return val if exists(val) else d
16+
17+
def divisible_by(num, den):
18+
return (num % den) == 0
19+
20+
# simple vit sinusoidal pos emb
21+
22+
def posemb_sincos_2d(t, temperature = 10000):
23+
h, w, d, device = *t.shape[1:], t.device
24+
y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij')
25+
assert (d % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
26+
omega = torch.arange(d // 4, device = device) / (d // 4 - 1)
27+
omega = temperature ** -omega
28+
29+
y = y.flatten()[:, None] * omega[None, :]
30+
x = x.flatten()[:, None] * omega[None, :]
31+
pos = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1)
32+
33+
return pos.float()
34+
35+
# bias-less layernorm with unit offset trick (discovered by Ohad Rubin)
36+
37+
class LayerNorm(Module):
38+
def __init__(self, dim):
39+
super().__init__()
40+
self.ln = nn.LayerNorm(dim, elementwise_affine = False)
41+
self.gamma = nn.Parameter(torch.zeros(dim))
42+
43+
def forward(self, x):
44+
normed = self.ln(x)
45+
return normed * (self.gamma + 1)
46+
47+
# mlp
48+
49+
def MLP(dim, factor = 4, dropout = 0.):
50+
hidden_dim = int(dim * factor)
51+
return nn.Sequential(
52+
LayerNorm(dim),
53+
nn.Linear(dim, hidden_dim),
54+
nn.GELU(),
55+
nn.Dropout(dropout),
56+
nn.Linear(hidden_dim, dim),
57+
nn.Dropout(dropout)
58+
)
59+
60+
# attention
61+
62+
class Attention(Module):
63+
def __init__(
64+
self,
65+
dim,
66+
heads = 8,
67+
dim_head = 64,
68+
dropout = 0.,
69+
reuse_attention = False
70+
):
71+
super().__init__()
72+
inner_dim = dim_head * heads
73+
74+
self.scale = dim_head ** -0.5
75+
self.heads = heads
76+
self.reuse_attention = reuse_attention
77+
78+
self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads)
79+
80+
self.norm = LayerNorm(dim)
81+
self.attend = nn.Softmax(dim = -1)
82+
self.dropout = nn.Dropout(dropout)
83+
84+
self.to_q = nn.Linear(dim, inner_dim, bias = False) if not reuse_attention else None
85+
self.to_k = nn.Linear(dim, inner_dim, bias = False) if not reuse_attention else None
86+
self.to_v = nn.Linear(dim, inner_dim, bias = False)
87+
88+
self.to_out = nn.Sequential(
89+
Rearrange('b h n d -> b n (h d)'),
90+
nn.Linear(inner_dim, dim, bias = False),
91+
nn.Dropout(dropout)
92+
)
93+
94+
def forward(
95+
self,
96+
x,
97+
context = None,
98+
return_attn = False,
99+
attn = None
100+
):
101+
x = self.norm(x)
102+
context = default(context, x)
103+
104+
v = self.to_v(context)
105+
v = self.split_heads(v)
106+
107+
if not self.reuse_attention:
108+
qk = (self.to_q(x), self.to_k(context))
109+
q, k = tuple(self.split_heads(t) for t in qk)
110+
111+
q = q * self.scale
112+
sim = einsum(q, k, 'b h i d, b h j d -> b h i j')
113+
114+
attn = self.attend(sim)
115+
attn = self.dropout(attn)
116+
else:
117+
assert exists(attn), 'attention matrix must be passed in for reusing previous attention'
118+
119+
out = einsum(attn, v, 'b h i j, b h j d -> b h i d')
120+
out = self.to_out(out)
121+
122+
if not return_attn:
123+
return out
124+
125+
return out, attn
126+
127+
# LookViT
128+
129+
class LookViT(Module):
130+
def __init__(
131+
self,
132+
*,
133+
dim,
134+
image_size,
135+
num_classes,
136+
depth = 3,
137+
patch_size = 16,
138+
heads = 8,
139+
mlp_factor = 4,
140+
dim_head = 64,
141+
highres_patch_size = 12,
142+
highres_mlp_factor = 4,
143+
cross_attn_heads = 8,
144+
cross_attn_dim_head = 64,
145+
patch_conv_kernel_size = 7,
146+
dropout = 0.1,
147+
channels = 3
148+
):
149+
super().__init__()
150+
assert divisible_by(image_size, highres_patch_size)
151+
assert divisible_by(image_size, patch_size)
152+
assert patch_size > highres_patch_size, 'patch size of the main vision transformer should be smaller than the highres patch sizes (that does the `lookup`)'
153+
assert not divisible_by(patch_conv_kernel_size, 2)
154+
155+
self.dim = dim
156+
self.image_size = image_size
157+
self.patch_size = patch_size
158+
159+
kernel_size = patch_conv_kernel_size
160+
patch_dim = (highres_patch_size * highres_patch_size) * channels
161+
162+
self.to_patches = nn.Sequential(
163+
Rearrange('b c (h p1) (w p2) -> b (p1 p2 c) h w', p1 = highres_patch_size, p2 = highres_patch_size),
164+
nn.Conv2d(patch_dim, dim, kernel_size, padding = kernel_size // 2),
165+
Rearrange('b c h w -> b h w c'),
166+
LayerNorm(dim),
167+
)
168+
169+
# absolute positions
170+
171+
num_patches = (image_size // highres_patch_size) ** 2
172+
self.pos_embedding = nn.Parameter(torch.randn(num_patches, dim))
173+
174+
# lookvit blocks
175+
176+
layers = ModuleList([])
177+
178+
for _ in range(depth):
179+
layers.append(ModuleList([
180+
Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = dropout),
181+
MLP(dim = dim, factor = mlp_factor, dropout = dropout),
182+
Attention(dim = dim, dim_head = cross_attn_dim_head, heads = cross_attn_heads, dropout = dropout),
183+
Attention(dim = dim, dim_head = cross_attn_dim_head, heads = cross_attn_heads, dropout = dropout, reuse_attention = True),
184+
LayerNorm(dim),
185+
MLP(dim = dim, factor = highres_mlp_factor, dropout = dropout)
186+
]))
187+
188+
self.layers = layers
189+
190+
self.norm = LayerNorm(dim)
191+
self.highres_norm = LayerNorm(dim)
192+
193+
self.to_logits = nn.Linear(dim, num_classes, bias = False)
194+
195+
def forward(self, img):
196+
assert img.shape[-2:] == (self.image_size, self.image_size)
197+
198+
# to patch tokens and positions
199+
200+
highres_tokens = self.to_patches(img)
201+
size = highres_tokens.shape[-2]
202+
203+
pos_emb = posemb_sincos_2d(highres_tokens)
204+
highres_tokens = highres_tokens + rearrange(pos_emb, '(h w) d -> h w d', h = size)
205+
206+
tokens = F.interpolate(
207+
rearrange(highres_tokens, 'b h w d -> b d h w'),
208+
img.shape[-1] // self.patch_size,
209+
mode = 'bilinear'
210+
)
211+
212+
tokens = rearrange(tokens, 'b c h w -> b (h w) c')
213+
highres_tokens = rearrange(highres_tokens, 'b h w c -> b (h w) c')
214+
215+
# attention and feedforwards
216+
217+
for attn, mlp, lookup_cross_attn, highres_attn, highres_norm, highres_mlp in self.layers:
218+
219+
# main tokens cross attends (lookup) on the high res tokens
220+
221+
lookup_out, lookup_attn = lookup_cross_attn(tokens, highres_tokens, return_attn = True) # return attention as they reuse the attention matrix
222+
tokens = lookup_out + tokens
223+
224+
tokens = attn(tokens) + tokens
225+
tokens = mlp(tokens) + tokens
226+
227+
# attention-reuse
228+
229+
lookup_attn = rearrange(lookup_attn, 'b h i j -> b h j i') # transpose for reverse cross attention
230+
231+
highres_tokens = highres_attn(highres_tokens, tokens, attn = lookup_attn) + highres_tokens
232+
highres_tokens = highres_norm(highres_tokens)
233+
234+
highres_tokens = highres_mlp(highres_tokens) + highres_tokens
235+
236+
# to logits
237+
238+
tokens = self.norm(tokens)
239+
highres_tokens = self.highres_norm(highres_tokens)
240+
241+
tokens = reduce(tokens, 'b n d -> b d', 'mean')
242+
highres_tokens = reduce(highres_tokens, 'b n d -> b d', 'mean')
243+
244+
return self.to_logits(tokens + highres_tokens)
245+
246+
# main
247+
248+
if __name__ == '__main__':
249+
v = LookViT(
250+
image_size = 256,
251+
num_classes = 1000,
252+
dim = 512,
253+
depth = 2,
254+
heads = 8,
255+
dim_head = 64,
256+
patch_size = 32,
257+
highres_patch_size = 8,
258+
highres_mlp_factor = 2,
259+
cross_attn_heads = 8,
260+
cross_attn_dim_head = 64,
261+
dropout = 0.1
262+
).cuda()
263+
264+
img = torch.randn(2, 3, 256, 256).cuda()
265+
pred = v(img)
266+
267+
assert pred.shape == (2, 1000)

0 commit comments

Comments
 (0)