You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+15Lines changed: 15 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -22,6 +22,7 @@ Hi there, and welcome to the `extra-keras-datasets` module! This extension to th
22
22
*[KMNIST-K49](#kmnist-k49)
23
23
*[SVHN-Normal](#svhn-normal)
24
24
*[SVHN-Extra](#svhn-extra)
25
+
*[STL-10](#stl-10)
25
26
-[Contributors and other references](#contributors-and-other-references)
26
27
-[License](#license)
27
28
@@ -154,6 +155,18 @@ from extra-keras-datasets import svhn
154
155
155
156
---
156
157
158
+
### STL-10
159
+
The STL-10 dataset is an image recognition dataset for developing unsupervised feature learning, deep learning, self-taught learning algorithms. It contains 5.000 training images and 8.000 testing images, and represents 10 classes in total (airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck).
* Cohen, G., Afshar, S., Tapson, J., & van Schaik, A. (2017). EMNIST: an extension of MNIST to handwritten letters. Retrieved from http://arxiv.org/abs/1702.05373
@@ -162,6 +175,8 @@ from extra-keras-datasets import svhn
162
175
* Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., & Ha, D. (2018). Deep learning for classical Japanese literature. arXiv preprint arXiv:1812.01718. Retrieved from https://arxiv.org/abs/1812.01718
163
176
***SVHN dataset:**
164
177
* Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading digits in natural images with unsupervised feature learning. Retrieved from http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf / http://ufldl.stanford.edu/housenumbers/
178
+
***STL-10 dataset:**
179
+
* Coates, A., Ng, A., & Lee, H. (2011, June). An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics (pp. 215-223). Retrieved from http://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf
165
180
166
181
## License
167
182
The licenseable parts of this repository are licensed under a [MIT License](./LICENSE), so you're free to use this repo in your machine learning projects / blogs / exercises, and so on. Happy engineering! 🚀
Description: The STL-10 dataset is an image recognition dataset for developing unsupervised feature learning, deep learning, self-taught learning algorithms.
5
+
6
+
~~~ Important note ~~~
7
+
Please cite the following paper when using or referencing the dataset:
8
+
Coates, A., Ng, A., & Lee, H. (2011, June). An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics (pp. 215-223). Retrieved from http://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf
9
+
10
+
'''
11
+
12
+
fromkeras.utils.data_utilsimportget_file
13
+
fromscipyimportioassio
14
+
importshutil
15
+
importnumpyasnp
16
+
17
+
defload_data(path='stl10_matlab.tar.gz'):
18
+
"""Loads the STL-10 dataset.
19
+
# Arguments
20
+
path: path where to cache the dataset locally
21
+
(relative to ~/.keras/datasets).
22
+
# Returns
23
+
Tuple of Numpy arrays: `(input_train, target_train), (input_test, target_test)`.
0 commit comments